Ashok Litwin-Kumar

Assistant Professor, Department of Neuroscience, Columbia University
Jerome L. Greene Science Center, rm. L6-077
ude [tod] aibmuloc [ta] 5263ka

I am an assistant professor in the Department of Neuroscience and a member of the Center for Theoretical Neuroscience and the Zuckerman Institute. Research in my group focuses on learning algorithms and their neural implementations. How do organisms use their past experiences to adapt their current behavior? How do these neural algorithms compare to those studied in machine learning and artificial intelligence? We approach these questions by working closely with experimental collaborators and building well-constrained models of learning and synaptic plasticity.


A. A. Zarin*, B. Mark*, A. Cardona, A. Litwin-Kumar & C. Q. Doe (2019). A Drosophila larval premotor/motor neuron connectome generating two behaviors via distinct spatio-temporal muscle activity. bioRxiv: 617977. bib | eprint ]

T. H. Moskovitz, A. Litwin-Kumar & L. F. Abbott (2018). Feedback alignment in deep convolutional networks. arXiv: 1812.06488 [cs.NE]. bib | eprint ]

S. R. Bittner, R. C. Williamson, A. C. Snyder, A. Litwin-Kumar, B. Doiron, S. M. Chase, M. A. Smith & B. M. Yu (2017). Population activity structure of excitatory and inhibitory neurons. PLOS ONE 12(8), e0181773. bib | journal | pdf ]

K. Eichler*, F. Li*, A. Litwin-Kumar*, Y. Park, I. Andrade, C. M. Schneider-Mizell, T. Saumweber, A. Huser, C. Eschbach, B. Gerber, R. D. Fetter, J. W. Truman, C. E. Priebe, L. F. Abbott, A. S. Thum, M. Zlatic & A. Cardona (2017). The complete connectome of a learning and memory centre in an insect brain. Nature 548(7666), 175–182. bib | journal | pdf ]
News Feature on circuit mapping.

A. Litwin-Kumar, K. D. Harris, R. Axel, H. Sompolinsky & L. F. Abbott (2017). Optimal degrees of synaptic connectivity. Neuron 93(5), 1153–1164. bib | journal | pdf ]

R. C. Williamson, B. R. Cowley, A. Litwin-Kumar, B. Doiron, A. Kohn, M. A. Smith & B. M. Yu (2016). Scaling properties of dimensionality reduction for neural populations and network models. PLOS Computational Biology 12(12), e1005141. bib | journal | pdf ]

A. Litwin-Kumar, R. Rosenbaum & B. Doiron (2016). Inhibitory stabilization and visual coding in cortical circuits with multiple interneuron subtypes. Journal of Neurophysiology 115(3), 1399–1409. bib | journal | pdf ]

B. Doiron, A. Litwin-Kumar, R. Rosenbaum, G. Ocker & K. Josić (2016). The mechanics of state dependent neural correlations [review]. Nature Neuroscience 19(3), 383–393. bib | journal | pdf ]

G. Ocker, A. Litwin-Kumar & B. Doiron (2015). Self-organization of microcircuit structure in networks of spiking neurons with plastic synapses. PLOS Computational Biology 11(8), e1004458. bib | journal | pdf ]

A. Litwin-Kumar & B. Doiron (2014). Formation and maintenance of neuronal assemblies through synaptic plasticity. Nature Communications 5(5319). bib | journal | pdf ]

B. Doiron & A. Litwin-Kumar (2014). Balanced neural architecture and the idling brain. Frontiers in Computational Neuroscience 8(56). bib | journal | pdf ]

A. Litwin-Kumar (2013). Relationship between neuronal architecture and variability in cortical circuits. Ph.D. thesis, Carnegie Mellon University. bib | link ]

A. Litwin-Kumar & B. Doiron (2012). Slow dynamics and high variability in balanced cortical networks with clustered connections. Nature Neuroscience 15(11), 1498–1505. bib | journal | pdf ]
News & Views by M. M. Churchland & L. F. Abbott.

A. Litwin-Kumar, M. J. Chacron & B. Doiron (2012). The spatial structure of stimuli shapes the timescale of correlations in population spiking activity. PLOS Computational Biology 8(9), e1002667. bib | journal | pdf ]

A. Polk, A. Litwin-Kumar & B. Doiron (2012). Correlated neural variability in persistent state networks. PNAS 109(16), 6295–6300. bib | journal | pdf ]

A. Litwin-Kumar, A. M. Oswald, N. N. Urban & B. Doiron (2011). Balanced synaptic input shapes the correlation between neural spike trains. PLOS Computational Biology 7(12), e1002305. bib | journal | pdf ]

Publications also on Google scholar. *equal contribution


2017: Algorithms for computation of dimension and error rate from Litwin-Kumar, Harris, Axel, Sompolinsky & Abbott. [ download ]

2016: Spiking network with multiple inhibitory interneuron subtypes from Litwin-Kumar, Rosenbaum & Doiron. [ download ]

2014: Balanced spiking network with synaptic plasticity from Litwin-Kumar & Doiron. [ download ]

2012: Balanced spiking network with clustered connections from Litwin-Kumar & Doiron. [ download ]

Code is written in Julia and Python.


Math 0290: Applied Differential Equations (University of Pittsburgh, Spring 2014)

Parts of this file were generated by bibtex2html 1.99.