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Abstract The cerebellar granule cell layer has inspired numerous theoretical models of neural 
representations that support learned behaviors, beginning with the work of Marr and Albus. In 
these models, granule cells form a sparse, combinatorial encoding of diverse sensorimotor inputs. 
Such sparse representations are optimal for learning to discriminate random stimuli. However, 
recent observations of dense, low- dimensional activity across granule cells have called into question 
the role of sparse coding in these neurons. Here, we generalize theories of cerebellar learning to 
determine the optimal granule cell representation for tasks beyond random stimulus discrimination, 
including continuous input- output transformations as required for smooth motor control. We show 
that for such tasks, the optimal granule cell representation is substantially denser than predicted by 
classical theories. Our results provide a general theory of learning in cerebellum- like systems and 
suggest that optimal cerebellar representations are task- dependent.

Editor's evaluation
Models of cerebellar function and the coding of inputs in the cerebellum often assume that random 
stimuli are a reasonable stand- in for real stimuli. However, the important contribution of this paper 
is that conclusions about optimality and sparseness in these models do not generalize to potentially 
more realistic sets of stimuli, for example, those drawn from a low- dimensional manifold. The mathe-
matical analyses in the paper are convincing and possible limitations, including the abstraction from 
biological details, are well discussed.

Introduction
A striking property of cerebellar anatomy is the vast expansion in number of granule cells compared 
to the mossy fibers that innervate them (Eccles et al., 1967). This anatomical feature has led to the 
proposal that the function of the granule cell layer is to produce a high- dimensional representa-
tion of lower- dimensional mossy fiber activity (Marr, 1969; Albus, 1971; Cayco- Gajic and Silver, 
2019). In such theories, granule cells integrate information from multiple mossy fibers and respond 
in a nonlinear manner to different input combinations. Detailed theoretical analysis has argued that 
anatomical parameters such as the ratio of granule cells to mossy fibers (Babadi and Sompolinsky, 
2014), the number of inputs received by individual granule cells (Litwin- Kumar et al., 2017; Cayco- 
Gajic et al., 2017), and the distribution of granule- cell- to- Purkinje- cell synaptic weights Brunel et al., 
2004 have quantitative values that maximize the dimension of the granule cell representation and 
learning capacity. Sparse activity, which increases dimension, is also cited as a key property of this 
representation (Marr, 1969; Albus, 1971; Babadi and Sompolinsky, 2014; but see Spanne and Jörn-
tell, 2015). Sparsity affects both learning speed (Cayco- Gajic et al., 2017) and generalization, the 
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ability to predict correct labels for previously unseen inputs (Barak et al., 2013; Babadi and Sompo-
linsky, 2014; Litwin- Kumar et al., 2017).

Theories that study the effects of dimension on learning typically focus on the ability of a system to 
perform categorization tasks with random, high- dimensional inputs (Barak et al., 2013; Babadi and 
Sompolinsky, 2014; Litwin- Kumar et al., 2017; Cayco- Gajic et al., 2017). In this case, increasing 
the dimension of the granule cell representation increases the number of inputs that can be discrimi-
nated. However, cerebellar circuits participate in diverse behaviors, including dexterous movements, 
inter- limb coordination, the formation of internal models, and cognitive behaviors (Ito and Itō, 1984; 
Wolpert et al., 1998; Strick et al., 2009). Cerebellum- like circuits, such as the insect mushroom body 
and the electrosensory system of electric fish, support other functions such as associative learning 
(Modi et al., 2020) and the cancellation of self- generated sensory signals (Kennedy et al., 2014), 
respectively. This diversity raises the question of whether learning high- dimensional categorization 
tasks is a sufficient framework for probing the function of granule cells and their analogs.

Several recent studies have reported dense activity in cerebellar granule cells in response to sensory 
stimulation or during motor control tasks (Jörntell and Ekerot, 2006; Knogler et al., 2017; Wagner 
et al., 2017; Giovannucci et al., 2017; Badura and De Zeeuw, 2017; Wagner et al., 2019), at odds 
with classical theories (Marr, 1969; Albus, 1971). Moreover, there is evidence that granule cell firing 
rates differ across cerebellar regions (Heath et al., 2014; Witter and De Zeeuw, 2015). In contrast 
to this reported dense activity in cerebellar granule cells, odor responses in Kenyon cells, the analogs 
of granule cells in the Drosophila mushroom body, are sparse, with 5–10% of neurons responding to 
odor stimulation (Turner et al., 2008; Honegger et al., 2011; Lin et al., 2014).

We propose that these differences can be explained by the capacity of representations with 
different levels of sparsity to support learning of different tasks. We show that the optimal level of 
sparsity depends on the structure of the input- output relationship of a task. When learning input- 
output mappings for motor control tasks, the optimal granule cell representation is much denser than 
predicted by previous analyses. To explain this result, we develop an analytic theory that predicts the 
performance of cerebellum- like circuits for arbitrary learning tasks. The theory describes how prop-
erties of cerebellar architecture and activity control these networks’ inductive bias: the tendency of a 
network toward learning particular types of input- output mappings (Sollich, 1998; Jacot et al., 2018; 
Bordelon et al., 2020; Canatar et al., 2021b; Simon et al., 2021). The theory shows that inductive 
bias, rather than the dimension of the representation alone, is necessary to explain learning perfor-
mance across tasks. It also suggests that cerebellar regions specialized for different functions may 
adjust the sparsity of their granule cell representations depending on the task.

Results
In our model, a granule cell layer of  M   neurons receives connections from a random subset of  N   mossy 
fiber inputs. Because  M ≫ N   in the cerebellar cortex and cerebellum- like structures (approximately 
 M = 200, 000  and  N = 7, 000  for the neurons presynaptic to a single Purkinje cell in the cat brain; Eccles 
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Figure 1. Schematic of cerebellar cortex model. (A) Mossy fiber inputs (blue) project to granule cells (green), which send parallel fibers that contact 
a Purkinje cell (black). (B) Diagram of neural network model.  D  task variables are embedded, via a linear transformation  A , in the activity of  N   input 
layer neurons. Connections from the input layer to the expansion layer are described by a synaptic weight matrix  J . (C) Illustration of task subspace. 
Points  x  in a  D - dimensional space of task variables are embedded in a  D - dimensional subspace of the  N  - dimensional input layer activity  n  ( D =2,  N  =3 
illustrated).

https://doi.org/10.7554/eLife.82914
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et al., 1967), we refer to the granule cell layer as the expansion layer and the mossy fiber layer as the 
input layer (Figure 1A and B).

A typical assumption in computational theories of the cerebellar cortex is that inputs are randomly 
distributed in a high- dimensional space (Marr, 1969; Albus, 1971; Brunel et al., 2004; Babadi and 
Sompolinsky, 2014; Billings et al., 2014; Litwin- Kumar et al., 2017). While this may be a reason-
able simplification in some cases, many tasks, including cerebellum- dependent tasks, are likely best- 
described as being encoded by a low- dimensional set of variables. For example, the cerebellum is 
often hypothesized to learn a forward model for motor control (Wolpert et al., 1998), which uses 
sensory input and motor efference to predict an effector’s future state. Mossy fiber activity recorded 
in monkeys correlates with position and velocity during natural movement (van Kan et al., 1993). 
Sources of motor efference copies include motor cortex, whose population activity lies on a low- 
dimensional manifold (Wagner et al., 2019; Huang et al., 2013; Churchland et al., 2010; Yu et al., 
2009). We begin by modeling the low dimensionality of inputs and later consider more specific tasks.

We therefore assume that the inputs to our model lie on a  D - dimensional subspace embedded 
in the  N  - dimensional input space, where  D  is typically much smaller than  N   (Figure 1B). We refer 
to this subspace as the ‘task subspace’ (Figure 1C). A location in this subspace is described by a  D  
dimensional vector  x , while the corresponding input layer activity is given by  n = Ax , with  A  an  N × D  
matrix describing the embedding of the task variables in the input layer. An  M × D  effective weight 
matrix  Jeff = JAJeff  , which describes the selectivity of expansion layer neurons to task variables, is 
determined by  A  and the  M × N   input- to- expansion- layer synaptic weight matrix  J . The activity of 
neurons in the expansion layer is given by:

 h = ϕ(Jeffx − θ),  (1)

where  ϕ  is a rectified linear activation function  ϕ(u) = max(u, 0)  applied element- wise. Our results 
also hold for other threshold- polynomial activation functions. The scalar threshold  θ  is shared across 
neurons and controls the coding level, which we denote by  f  , defined as the average fraction of 
neurons in the expansion layer that are active. We show results for  f < 0.5 , since extremely dense codes 
are rarely observed in experiments (Olshausen and Field, 2004; see Discussion). For analytical tracta-
bility, we begin with the case where the entries of  Jeff   are independent Gaussian random variables, as 
in previous theories (Rigotti et al., 2013; Barak et al., 2013; Babadi and Sompolinsky, 2014). This 
holds when the columns of  A  are orthonormal (ensuring that the embedding of the task variables in 
the input layer preserves their geometry) and the entries of  J  are independent and Gaussian. Later, we 
will show that networks with more realistic connectivity behave similarly to this case.

Optimal coding level is task-dependent
In our model, a learning task is defined by a mapping from task variables  x  to an output  f(x) , repre-
senting a target change in activity of a readout neuron, for example a Purkinje cell. The limited scope 
of this definition implies our results should not strongly depend on the influence of the readout neuron 
on downstream circuits. The readout adjusts its incoming synaptic weights from the expansion layer to 
better approximate this target output. For example, for an associative learning task in which sensory 
stimuli are classified into categories such as appetitive or aversive, the task may be represented as a 
mapping from inputs to two discrete firing rates corresponding to the readout’s response to stimuli 
of each category (Figure 2A). In contrast, for a forward model, in which the consequences of motor 
commands are computed using a model of movement dynamics, an input encoding the current 
sensorimotor state is mapped to a continuous output representing the readout neuron’s tuning to a 
predicted sensory variable (Figure 2B).

To examine how properties of the expansion layer representation influence learning performance 
across tasks, we designed two families of tasks: one modeling categorization of random stimuli, which 
is often used to study the performance of expanded neural representations (Rigotti et al., 2013; 
Barak et al., 2013; Babadi and Sompolinsky, 2014; Litwin- Kumar et al., 2017; Cayco- Gajic et al., 
2017), and the other modeling learning of a continuously varying output. The former we refer to 
as a ‘random categorization task’ and is parameterized by the number of input pattern- to- category 
associations  P  learned during training (Figure 2C). During the training phase, the network learns to 
associate random input patterns  xµ ∈ RD  for  µ = 1, . . . , P  with random binary categories  yµ = ±1 . 
The elements of  xµ  are drawn i.i.d. from a normal distribution with mean 0 and variance  1/D . We refer 
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to  xµ  as ‘training patterns’. To assess the network’s generalization performance, it is presented with 
‘test patterns’ generated by adding noise (parameterized by a noise magnitude  ϵ ; see Methods) to 
the training patterns. Tasks with continuous outputs (Figure 2D) are parameterized by a length scale 
that determines how quickly the output changes as a function of the input (specifically, input- output 
functions are drawn from a Gaussian process with length scale  γ  for variations in  f(x)  as a function of 
 x ; see Methods). In this case, both training and test patterns are drawn uniformly on the unit sphere. 
Later, we will also consider tasks implemented by specific cerebellum- like systems. See Table 1 for a 
summary of parameters throughout this study.

We trained the readout to approximate the target output for training patterns and generalize to 
unseen test patterns. The network’s prediction is  ̂f(x) = w · h(x)  for tasks with continuous outputs, or 

 ̂f(x) = sign(w · h(x))  for categorization tasks, where  w  are the synaptic weights of the readout from the 
expansion layer. These weights were set using least squares regression. Performance was measured as 
the fraction of incorrect predictions for categorization tasks, or relative mean squared error for tasks 

with continuous targets:  Error = E[(f(x)−̂f(x))2]
E[f(x)2]  , where the expectation is across test patterns.

We began by examining the dependence of learning performance on the coding level of the 
expansion layer. For random categorization tasks, performance is maximized at low coding levels 
(Figure 2E), consistent with previous results (Barak et al., 2013; Babadi and Sompolinsky, 2014). The 
optimal coding level remains below 0.1 in the model, regardless of the number of associations  P , the 
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Figure 2. Optimal coding level depends on task. (A) A random categorization task in which inputs are mapped to one of two categories (+1 or –1). Gray 
plane denotes the decision boundary of a linear classifier separating the two categories. (B) A motor control task in which inputs are the sensorimotor 
states  x(t)  of an effector which change continuously along a trajectory (gray) and outputs are components of predicted future states  x(t + δ) . 
(C) Schematic of random categorization tasks with  P  input- category associations. The value of the target function  f(x)  (color) is a function of two task 
variables x1 and x2. (D) Schematic of tasks involving learning a continuously varying Gaussian process target parameterized by a length scale  γ  . (E) Error 
rate as a function of coding level for networks trained to perform random categorization tasks similar to (C). Arrows mark estimated locations of minima. 
(F) Error as a function of coding level for networks trained to fit target functions sampled from Gaussian processes. Curves represent different values of 
the length scale parameter  γ  . Standard error of the mean is computed across 20 realizations of network weights and sampled target functions in (E) and 
200 in (F).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Sparse coding levels are sufficient for random categorization tasks irrespective of number of samples, noise level, and 
dimension.

Figure supplement 2. Task- dependence of optimal coding level is consistent across activation functions.

Figure supplement 3. Task- dependence of optimal coding level is consistent across input dimensions.

Figure supplement 4. Error as a function of coding level across different values of  P  and  γ  .

https://doi.org/10.7554/eLife.82914


 Research article Computational and Systems Biology | Neuroscience

Xie et al. eLife 2023;12:e82914. DOI: https://doi.org/10.7554/eLife.82914  5 of 36

level of input noise, and the dimension  D  (Figure 2—figure supplement 1). For continuously varying 
outputs, the dependence is qualitatively different (Figure  2F). The optimal coding level depends 
strongly on the length scale, with learning performance for slowly varying functions optimized at much 
higher coding levels than quickly varying functions. This dependence holds for different choices of 
threshold- nonlinear functions (Figure 2—figure supplement 2) or input dimension (Figure 2—figure 
supplement 3) and is most pronounced when the number of training patterns is limited (Figure 2—
figure supplement 4). Our observations are at odds with previous theories of the role of sparse 
granule cell representations (Marr, 1969; Albus, 1971; Babadi and Sompolinsky, 2014; Billings 
et al., 2014) and show that sparse activity does not always optimize performance for this broader set 
of tasks.

Geometry of the expansion layer representation
To determine how the optimal coding level depends on the task, we begin by quantifying how the 
expansion layer transforms the geometry of the task subspace. Later we will address how this transfor-
mation affects the ability of the network to learn a target. For ease of analysis, we will assume for now 
that inputs are normalized,  ∥x∥ = 1 , so that they lie on the surface of a sphere in  D  dimensions. The 
set of neurons in the expansion layer activated by an input  x  are those neurons  i  for which the align-
ment of their effective weights with the input,  J

eff
i · x , exceeds the activation threshold  θ  (Equation 1; 

Figure 3A). Increasing  θ  reduces the size of this set of neurons and hence reduces the coding level.
Different inputs activate different sets of neurons, and more similar inputs activate sets with greater 

overlap. As the coding level is reduced, this overlap is also reduced (Figure 3B). In fact, this reduction 

Table 1. Summary of simulation parameters.
 M  : number of expansion layer neurons.  N  : number of input layer neurons.  K  : number of connections from input layer to a single 
expansion layer neuron.  S : total number of connections from input to expansion layer.  f  : expansion layer coding level.  D : number 
of task variables.  P : number of training patterns.  γ : Gaussian process length scale.  ϵ : magnitude of noise for random categorization 
tasks. We do not report  N   and  K   for simulations in which  Jeff   contains Gaussian i.i.d. elements as results do not depend on these 
parameters in this case.

Figure panel Network parameters Task parameters

Figure 2E  M = 10,000  D = 50, P = 1,000, ϵ = 0.1 

Figures 2F, 4G and 5B (full)  M = 200,000  D = 3, P = 30 

Figure 5B and E  M = 200,000, N = 7,000, K = 4  D = 3, P = 30 

Figure 6A  S = MK = 10,000, N = 100, f = 0.3  D = 3, P = 200 

Figure 6B  N = 700, K = 4, f = 0.3  D = 3, P = 200 

Figure 6C  M = 5,000, f = 0.3  D = 3, P = 100, γ = 1 

Figure 6D  M = 1,000  D = 3, P = 50 

Figure 7A  M = 20,000  D = 6, P = 100 ; see Methods

Figure 7B  M = 10,000, N = 50, K = 7  D = 50, P = 100, ϵ = 0.1 

Figure 7C  M = 20,000, N = 206, 1 ≤ K ≤ 3 see Methods

Figure 7D  M = 20,000, N = K = 24  D = 1, P = 30 ; see Methods

Figure 2—figure supplement 1  M = 10,000 See Figure

Figure 2—figure supplement 2  M = 20,000  D = 3, P = 30 

Figure 2—figure supplement 3  M = 20,000  D = 3, P = 30 

Figure 2—figure supplement 4  M = 20,000  D = 3 

Figure 7—figure supplement 1  M = 20,000  D = 3, P = 200 

Figure 7—figure supplement 2  M = 10,000, f = 0.3  D = 3, P = 30, γ = 1 

https://doi.org/10.7554/eLife.82914
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in overlap is greater than the reduction in number of neurons that respond to either of the individual 
inputs, reflecting the fact that representations with low coding levels perform ‘pattern separation’ 
(Figure 3B, compare purple and red or blue regions).

This effect is summarized by the ‘kernel’ of the network (Schölkopf and Smola, 2002; Rahimi and 
Recht, 2007), which measures overlap of representations in the expansion layer as a function of the 
task variables:

 
K(x, x′) = 1

M
h(x) · h(x′).

  
(2)

Equations 1 and 2 show that the threshold  θ , which determines the coding level, influences the 
kernel through its effect on the expansion layer activity  h(x) . When inputs are normalized and the 
effective weights are Gaussian, we compute a semi- analytic expression for the kernel of the expansion 
layer in the limit of a large expansion ( M → ∞ ; see Appendix). In this case, the kernel depends only on 
the overlap of the task variables,  K(x, x′) = K(x · x′) . Plotting the kernel for different choices of coding 
level demonstrates that representations with lower coding levels exhibit greater pattern separation 
(Figure 3C; Babadi and Sompolinsky, 2014). This is consistent with the observation that decreasing 
the coding level increases the dimension of the representation (Figure 3D).

Frequency decomposition of kernel and task explains optimal coding 
level
We now relate the geometry of the expansion layer representation to performance across the tasks we 
have considered. Previous studies focused on high- dimensional, random categorization tasks in which 
inputs belong to a small number of well- separated clusters whose centers are random uncorrelated 
patterns. Generalization is assessed by adding noise to previously observed training patterns (Babadi 
and Sompolinsky, 2014; Litwin- Kumar et al., 2017; Figure 4A). In this case, performance depends 
only on overlaps at two spatial scales: the overlap between training patterns belonging to different 
clusters, which is small, and the overlap between training and test patterns belonging to the same 
cluster, which is large (Figure 4B). For such tasks, the kernel evaluated near these two values—specif-
ically, the behavior of  K(x · x′)  near  x · x′ = 0  and  x · x′ = 1 −∆ , where  ∆  is a measure of within- cluster 
noise—fully determines generalization performance (Figure  4C; see Appendix). Sparse expansion 
layer representations reduce the overlap of patterns belonging to different clusters, increasing dimen-
sion and generalization performance (Figure 3D, Figure 2E).
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Figure 3. Effect of coding level on the expansion layer representation. (A) Effect of activation threshold on coding level. A point on the surface of the 
sphere represents a neuron with effective weights  J

eff
i  . Blue region represents the set of neurons activated by  x , i.e., neurons whose input exceeds 

the activation threshold  θ  (inset). Darker regions denote higher activation. (B) Effect of coding level on the overlap between population responses to 
different inputs. Blue and red regions represent the neurons activated by  x  and  x′ , respectively. Overlap (purple) represents the set of neurons activated 
by both stimuli. High coding level leads to more active neurons and greater overlap. (C) Kernel  K(x, x′)  for networks with rectified linear activation 
functions (Equation 1), normalized so that fully overlapping representations have an overlap of 1, plotted as a function of overlap in the space of task 
variables. The vertical axis corresponds to the ratio of the area of the purple region to the area of the red or blue regions in (B). Each curve corresponds 
to the kernel of an infinite- width network with a different coding level  f  . (D) Dimension of the expansion layer representation as a function of coding 
level for a network with  M = 10, 000  and  D = 3 .
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We study tasks where training patterns used for learning and test patterns used to assess gener-
alization are both drawn according to a distribution over a low- dimensional space of task variables. 
While the mean overlap between pairs of random patterns remains zero regardless of dimension, fluc-
tuations around the mean increase when the space is low dimensional, leading to a broader distribu-
tion of overlaps (Figure 4B). In this case, generalization performance depends on values of the kernel 
function evaluated across this entire range of overlaps. Methods from the theory of kernel regression 
(Sollich, 1998; Jacot et al., 2018; Bordelon et al., 2020; Canatar et al., 2021b; Simon et al., 2021) 
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Figure 4. Frequency decomposition of network and target function. (A) Geometry of high- dimensional 
categorization tasks where input patterns are drawn from random, noisy clusters (light regions). Performance 
depends on overlaps between training patterns from different clusters (green) and on overlaps between training 
and test patterns from the same cluster (orange). (B) Distribution of overlaps of training and test patterns in 
the space of task variables for a high- dimensional task ( D = 200 ) with random, clustered inputs as in (A) and 
a low- dimensional task ( D = 5 ) with inputs drawn uniformly on a sphere. (C) Overlaps in (A) mapped onto the 
kernel function. Overlaps between training patterns from different clusters are small (green). Overlaps between 
training and test patterns from the same cluster are large (orange). (D) Schematic illustration of basis function 
decomposition, for eigenfunctions on a square domain. (E) Kernel eigenvalues (normalized by the sum of 
eigenvalues across modes) as a function of frequency for networks with different coding levels. (F) Power  c2

α  as 
a function of frequency for Gaussian process target functions. Curves represent different values of  γ  , the length 
scale of the Gaussian process. Power is averaged over 20 realizations of target functions. (G) Generalization error 
predicted using kernel eigenvalues (E) and target function decomposition (F) for the three target function classes 
shown in (F). Standard error of the mean is computed across 100 realizations of network weights and target 
functions.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Error as a function of coding level for learning pure- frequency spherical harmonic functions.

Figure supplement 2. Frequency content of categorization tasks.

https://doi.org/10.7554/eLife.82914
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capture these effects by quantifying a network’s performance on a learning task through a decom-
position of the target function into a set of basis functions (Figure 4D). Performance is assessed by 
summing the contribution of each mode in this decomposition to generalization error.

The decomposition expresses the kernel as a sum of eigenfunctions weighted by eigenvalues, 

 K(x, x′) =
∑

α λαψα(x)ψα(x′) . The eigenfunctions are determined by the network architecture and the 
distribution of inputs. As we show below, the eigenvalues  λα  determine the ease with which each 
corresponding eigenfunction  ψα(x) —one element of the basis function decomposition—is learned by 
the network. Under our present assumptions of Gaussian effective weights and uniformly distributed, 
normalized input patterns, the eigenfunctions are the spherical harmonic functions. These functions 
are ordered by increasing frequency, with higher frequencies corresponding to functions that vary 
more quickly as a function of the task variables. Spherical harmonics are defined for any input dimen-
sion; for example, in two dimensions they are the Fourier modes. We find that coding level substan-
tially changes the frequency dependence of the eigenvalues associated with these eigenfunctions 
(Figure 4E). Higher coding levels increase the relative magnitude of the low frequency eigenvalues 
compared to high- frequency eigenvalues. As we will show, this results in a different inductive bias for 
networks with different coding levels.

To calculate learning performance for an arbitrary task, we decompose the target function in the 
same basis as that of the kernel:

 
f(x) =

∑
α

cαψα(x)
  

(3)

The coefficient  cα  quantifies the weight of mode  α  in the decomposition. For the Gaussian process 
targets, we have considered, increasing length scale corresponds to a greater relative contribu-
tion of low versus high frequency modes (Figure 4F). Using these coefficients and the eigenvalues 
(Figure 4E), we obtain an analytical prediction of the mean- squared generalization error (‘Error’) for 
learning any given task (Figure 4G; see Methods):

 
Error = C1

∑
α

(
cα

C2 + λα

)2
,
  

(4)

where C1 and C2 do not depend on  α  (Canatar et al., 2021b; Simon et al., 2021; see Methods). 
Equation 4 illustrates that for equal values of  cα , modes with greater  λα  contribute less to the gener-
alization error.

Our theory reveals that the optima observed in Figure 2F are a consequence of the difference in 
eigenvalues of networks with different coding levels. This reflects an inductive bias (Sollich, 1998; 
Jacot et al., 2018; Bordelon et al., 2020; Canatar et al., 2021b; Simon et al., 2021) of networks 
with low and high coding levels toward the learning of high and low frequency functions, respectively 
(Figure 4E, Figure 4—figure supplement 1). Thus, the coding level’s effect on a network’s inductive 
bias, rather than dimension alone, determines learning performance. Previous studies that focused 
only on random categorization tasks did not observe this dependence, since errors in such tasks 
are dominated by the learning of high frequency components, for which sparse activity is optimal 
(Figure 4—figure supplement 2).

Performance of sparsely connected expansions
To simplify our analysis, we have so far assumed full connectivity between input and expansion layers 
without a constraint on excitatory or inhibitory synaptic weights. In particular, we have assumed that 
the effective weight matrix  Jeff   contains independent Gaussian entries (Figure 5A, top). However, 
synaptic connections between mossy fibers and granule cells are sparse and excitatory (Sargent 
et al., 2005), with a typical in- degree of  K = 4  mossy fibers per granule cell (Figure 5A, bottom). We 
therefore analyzed the performance of model networks with more realistic connectivity. Surprisingly, 
when  J  is sparse and nonnegative, both overall generalization performance and the task- dependence 
of optimal coding level remain unchanged (Figure 5B).

To understand this result, we examined how  J  and  A  shape the statistics of the effective weights 
onto the expansion layer neurons  Jeff  . A desirable property of the expansion layer representation is 
that these effective weights sample the space of task variables uniformly (Figure 3A), increasing the 
heterogeneity of tuning of expansion layer neurons (Litwin- Kumar et al., 2017). This occurs when  Jeff   

https://doi.org/10.7554/eLife.82914
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is a matrix of independent random Gaussian entries. If the columns of  A  are orthornormal and  J  is 
fully- connected with independent Gaussian entries,  Jeff   has this uniform sampling property.

However, when  J  is sparse and nonnegative, expansion layer neurons that share connections from 
the same input layer neurons receive correlated input currents. When  N   is small and  A  is random, 
fluctuations in  A  lead to biases in the input layer’s sampling of task variables which are inherited by the 
expansion layer. We quantify this by computing the distribution of correlations between the effective 

weights for pairs of expansion layer neurons, 
 
Corr

(
Jeff

i , Jeff
j

)
 
. This distribution indeed deviates from 

uniform sampling when  N   is small (Figure 5C). However, even when  N   is moderately large (but much 
less than  M  ), only small deviations from uniform sampling of task variables occur for low dimensional 
tasks as long as  D < K ≪ N   (see Appendix). In contrast, for high- dimensional tasks ( D ∼ N  ),  K ≪ D  
is sufficient, in agreement with previous findings (Litwin- Kumar et al., 2017). For realistic cerebellar 
parameters ( N = 7, 000  and  K = 4 ), the distribution is almost indistinguishable from that corresponding 
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Figure 5. Performance of networks with sparse connectivity. (A) Top: Fully connected network. Bottom: Sparsely 
connected network with in- degree  K < N   and excitatory weights with global inhibition onto expansion layer 
neurons. (B) Error as a function of coding level for fully connected Gaussian weights (gray curves) and sparse 
excitatory weights (blue curves). Target functions are drawn from Gaussian processes with different values of length 

scale  γ   as in Figure 2. (C) Distributions of synaptic weight correlations 
 
Corr

(
Jeff

i , Jeff
j

)
 
, where  J

eff
i   is the ith row of 

 Jeff  , for pairs of expansion layer neurons in networks with different numbers of input layer neurons  N   (colors) when 
 K = 4  and  D = 3 . Black distribution corresponds to fully connected networks with Gaussian weights. We note that 
when  D = 3 , the distribution of correlations for random Gaussian weight vectors is uniform on  [−1, 1]  as shown 
(for higher dimensions the distribution has a peak at 0). (D) Schematic of the selectivity of input layer neurons to 
task variables in distributed and clustered representations. (E) Error as a function of coding level for networks with 

distributed (black, same as in B) and clustered (orange) representations. (F) Distributions of 
 
Corr

(
Jeff

i , Jeff
j

)
 
 for pairs 

of expansion layer neurons in networks with distributed and clustered input representations when  K = 4 ,  D = 3 , 
and  N = 1,000 . Standard error of the mean was computed across 200 realizations in (B) and 100 in (E), orange 
curve.
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to uniform sampling (Figure 5C), consistent with the similar learning performance of these two cases 
(Figure 5B).

In the above analysis, an important assumption is that  A  is dense and random, so that the input 
layer forms a distributed representation in which each input layer neuron responds to a random 
combination of task variables (Figure 5D, top). If, on the other hand, the input layer forms a clus-
tered representation containing groups of neurons that each encode a single task variable (Figure 5D, 
bottom), we may expect different results. Indeed, with a clustered representation, sparse connec-

tivity dramatically reduces performance (Figure 5E). This is because the distribution of 
 
Corr

(
Jeff

i , Jeff
j

)
 
 

deviates substantially from that corresponding to uniform sampling (Figure 5F), even as  N → ∞  (see 
Appendix). Specifically, increasing  N   does not reduce the probability of two expansion layer neurons 
being connected to input layer neurons that encode the same task variables and therefore receiving 
highly correlated currents. As a result, expansion layer neurons do not sample task variables uniformly 
and performance is dramatically reduced.

Our results show that networks with small  K  , moderately large  N  , and a distributed input layer 
representation approach the performance of networks that sample task variables uniformly. This 
equivalence validates the applicability of our theory to these more realistic networks. It also argues for 
the importance of distributed sensorimotor representations in the cortico- cerebellar pathway, consis-
tent with the distributed nature of representations in motor cortex (Shenoy et al., 2013; Muscinelli 
et al., 2023).

Optimal cerebellar architecture is consistent across tasks
A history of theoretical modeling has shown a remarkable correspondence between anatomical prop-
erties of the cerebellar cortex and model parameters optimal for learning. These include the in- degree 
 K   of granule cells (Marr, 1969; Litwin- Kumar et al., 2017; Cayco- Gajic et al., 2017), the expansion 
ratio of the granule cells to the mossy fibers  M/N  (Babadi and Sompolinsky, 2014; Litwin- Kumar 
et al., 2017), and the distribution of synaptic weights from granule cells to Purkinje cells (Brunel et al., 
2004; Clopath et al., 2012; Clopath and Brunel, 2013). In these studies, model performance was 
assessed using random categorization tasks. We have shown that optimal coding level is dependent 
on the task being learned, raising the question of whether optimal values of these architectural param-
eters are also task- dependent.

Sparse connectivity ( K  =4, consistent with the typical in- degree of cerebellar granule cells) has 
been shown to optimize learning performance in cerebellar cortex models (Litwin- Kumar et  al., 
2017; Cayco- Gajic et al., 2017). We examined the performance of networks with different granule 
cell in- degrees learning Gaussian process targets. The optimal in- degree is small for all the tasks we 
consider, suggesting that sparse connectivity is sufficient for high performance across a range of 
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tasks (Figure 6A). This is consistent with the previous observation that the performance of a sparsely 
connected network approaches that of a fully connected network (Figure 5B).

Previous studies also showed that the expansion ratio from mossy fibers to granule cells  M/N   
controls the dimension of the granule cell representation (Babadi and Sompolinsky, 2014; Litwin- 
Kumar et al., 2017). The dimension increases with expansion ratio but saturates as expansion ratio 
approaches the anatomical value ( M/N ≈ 30  when  f ≈ 0.1  for the inputs presynaptic to an individual 
Purkinje cell). These studies assumed that mossy fiber activity is uncorrelated ( D = N  ) rather than 
low- dimensional ( D < N  ). This raises the question of whether a large expansion is beneficial when  D  
is small. We find that when the number of training patterns  P  is sufficiently large, performance still 
improves as  M/N   approaches its anatomical value, showing that Purkinje cells can exploit their large 
number of presynaptic inputs even in the case of low- dimensional activity (Figure 6B).

Brunel et al., 2004 showed that the distribution of granule- cell- to- Purkinje cell synaptic weights 
is consistent with the distribution that maximizes the number of random binary input- output 
mappings stored. This distribution exhibits a substantial fraction of silent synapses, consistent with 
experiments. These results also hold for analog inputs and outputs (Clopath and Brunel, 2013) and 
for certain forms of correlations among binary inputs and outputs (Clopath et al., 2012). However, 
the case we consider, where targets are a smoothly varying function of task variables, has not been 
explored. We observe a similar weight distribution for these tasks (Figure 6C), with the fraction of 
silent synapses remaining high across coding levels (Figure 6D). The fraction of silent synapses is 
lower for networks learning Gaussian process targets than those learning random categorization 
tasks, consistent with the capacity of a given network for learning such targets being larger (Clopath 
et al., 2012).

Although optimal coding level is task- dependent, these analyses suggest that optimal architec-
tural parameters are largely task- independent. Whereas coding level tunes the inductive bias of the 
network to favor the learning of specific tasks, these architectural parameters control properties of the 
representation that improve performance across tasks. In particular, sparse connectivity and a large 
expansion support uniform sampling of low- dimensional task variables (consistent with Figure 5C), 
while a large fraction of silent synapses is a consequence of a readout that maximizes learning perfor-
mance (Brunel et al., 2004).

Modeling specific behaviors dependent on cerebellum-like structures
So far, we have considered analytically tractable families of tasks with parameterized input- output 
functions. Next, we extend our results to more realistic tasks constrained by the functions of specific 
cerebellum- like systems, which include both highly structured, continuous input- output mappings and 
random categorization tasks.

To model the cerebellum’s role in predicting the consequences of motor commands (Wolpert 
et al., 1998), we examined the optimal coding level for learning the dynamics of a two- joint arm 
(Fagg et al., 1997). Given an initial state, the network predicts the change in the future position of the 
arm (Figure 7A). Performance is optimized at substantially higher coding levels than for random cate-
gorization tasks, consistent with our previous results for continuous input- output mappings (Figure 2E 
and F).

The mushroom body, a cerebellum- like structure in insects, is required for learning of associations 
between odors and appetitive or aversive valence (Modi et al., 2020). This behavior can be repre-
sented as a mapping from random representations of odors in the input layer to binary category labels 
(Figure  7B). The optimal coding level in a model with parameters consistent with the Drosophila 
mushroom body is less than 0.1, consistent with our previous results for random categorization tasks 
(Figure 2E) and the sparse odor- evoked responses in Drosophila Kenyon cells (Turner et al., 2008; 
Honegger et al., 2011; Lin et al., 2014).

The prediction and cancellation of self- generated sensory feedback has been studied extensively in 
mormyrid weakly electric fish and depends on the electrosensory lateral line lobe (ELL), a cerebellum- 
like structure (Bell et  al., 2008). Granule cells in the ELL provide a temporal basis for generating 
negative images that are used to cancel self- generated feedback (Figure 7C). We extended a detailed 
model of granule cells and their inputs (Kennedy et al., 2014) to study the influence of coding level 
on the effectiveness of this basis. The performance of this model saturated at relatively high coding 
levels, and notably the coding level corresponding to biophysical parameters estimated from data 
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coincided with the value at which further increases in performance were modest. This observation 
suggests that coding level is also optimized for task performance in this system.

A canonical function of the mammalian cerebellum is the adjustment of the vestibulo- ocular reflex 
(VOR), in which motion of the head is detected and triggers compensatory ocular motion in the 

Figure 7. Optimal coding level across tasks and neural systems. (A) Left: Schematic of two- joint arm. Center: 
Cerebellar cortex model in which sensorimotor task variables at time  t   are used to predict hand position at time 
 t + δ . Right: Error as a function of coding level. Black arrow indicates location of optimum. Dashed line indicates 
performance of a readout of the input layer. (B) Left: Odor categorization task. Center: Drosophila mushroom body 
model in which odors activate olfactory projection neurons and are associated with a binary category (appetitive or 
aversive). Right: Error rate, similar to (A), right. (C) Left: Schematic of electrosensory system of the mormyrid electric 
fish, which learns a negative image to cancel the self- generated feedback from electric organ discharges sensed 
by electroreceptors. Center: Electrosensory lateral line lobe (ELL) model in which MG cells learn a negative image. 
Right: Error as a function of coding level. Gray arrow indicates location of coding level estimated from biophysical 
parameters (Kennedy et al., 2014). (D) Left: Schematic of the vestibulo- cular reflex (VOR). Head rotations with 
velocity  H   trigger eye motion in the opposite direction with velocity  E  . During VOR adaptation, organisms adapt 
to different gains ( E/H  ). Center: Cerebellar cortex model in which the target function is the Purkinje cell’s firing rate 
as a function of head velocity. Right: Error, similar to (A), right.

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Optimal coding levels in the presence of spiking noise.

Figure supplement 2. Task- dependence of optimal coding level remains consistent under an online climbing 
fiber- based plasticity rule.

https://doi.org/10.7554/eLife.82914
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opposite direction. During VOR learning, Purkinje cells are tuned to head velocity, and their tuning 
curves are described as piecewise linear functions (Lisberger et al., 1994; Figure 7D). Although in 
vivo population recordings of granule cells during VOR adaptation are not, to our knowledge, avail-
able for comparison, our model predicts that performance for learning such tuning curves is high 
across a range of coding levels and shows that sparse codes are sufficient (although not necessary) for 
such tasks (Figure 7D).

These results predict diverse coding levels across different behaviors dependent on cerebellum- 
like structures. The odor categorization and VOR tasks both have input- output mappings that exhibit 
sharp nonlinearities and can be efficiently learned using sparse representations. In contrast, the 
forward modeling and feedback cancellation tasks have smooth input- output mappings and exhibit 
denser optima. These observations are consistent with our previous finding that more structured tasks 
favor denser coding levels than do random categorization tasks (Figure 2E and F).

Discussion
We have shown that the optimal granule cell coding level depends on the task being learned. While 
sparse representations are suitable for learning to categorize inputs into random categories, as 
predicted by classic theories, tasks involving structured input- output mappings benefit from denser 
representations (Figure 2). This reconciles such theories with the observation of dense granule cell 
activation during movement (Knogler et al., 2017; Wagner et al., 2017; Giovannucci et al., 2017; 
Badura and De Zeeuw, 2017; Wagner et  al., 2019). We also show that, in contrast to the task- 
dependence of optimal coding level, optimal anatomical values of granule cell and Purkinje cell 
connectivity are largely task- independent (Figure  6). This distinction suggests that a stereotyped 
cerebellar architecture may support diverse representations optimized for a variety of learning tasks.

Relationship to previous theories
Previous studies assessed the learning performance of cerebellum- like systems with a model Purkinje 
cell that associates random patterns of mossy fiber activity with one of two randomly assigned cate-
gories (Marr, 1969; Albus, 1971; Brunel et al., 2004; Babadi and Sompolinsky, 2014; Litwin- Kumar 
et al., 2017; Cayco- Gajic et al., 2017), a common benchmark for artificial learning systems (Gerace 
et al., 2022). In this case, a low coding level increases the dimension of the granule cell representa-
tion, permitting more associations to be stored and improving generalization to previously unseen 
inputs. The optimal coding level is low but not arbitrarily low, as extremely sparse representations 
introduce noise that hinders generalization (Barak et al., 2013; Babadi and Sompolinsky, 2014).

To examine a broader family of tasks, our learning problems extend previous studies in several 
ways. First, we consider inputs that may be constrained to a low- dimensional task subspace. Second, 
we consider input- output mappings beyond random categorization tasks. Finally, we assess general-
ization error for arbitrary locations on the task subspace, rather than only for noisy instances of previ-
ously presented inputs. As we have shown, these considerations require a complete analysis of the 
inductive bias of cerebellum- like networks (Figure 4). Our analysis generalizes previous approaches 
(Barak et al., 2013; Babadi and Sompolinsky, 2014; Litwin- Kumar et al., 2017) that focused on 
dimension and noise alone. In particular, both dimension and noise for random patterns can be directly 
calculated from the kernel function (Figure 3C; see Appendix).

Our theory builds upon techniques that been developed for understanding properties of kernel 
regression (Sollich, 1998; Jacot et al., 2018; Bordelon et al., 2020; Canatar et al., 2021b; Simon 
et al., 2021). Kernel approximations of wide neural networks are a major area of current research 
providing analytically tractable theories (Rahimi and Recht, 2007; Jacot et al., 2018; Chizat et al., 
2018). Prior studies have analyzed kernels corresponding to networks with zero (Cho and Saul, 2010) 
or mean- zero Gaussian thresholds (Basri et al., 2019; Jacot et al., 2018), which in both cases produce 
networks with a coding level of 0.5. Ours is the first kernel study of the effects of nonzero average 
thresholds. Our full characterization of the eigenvalue spectra and their decay rates as a function of the 
threshold extends previous work (Bach, 2017; Bietti and Bach, 2021). Furthermore, artificial neural 
network studies typically assume either fully- connected or convolutional layers, yet pruning connec-
tions after training barely degrades performance (Han et al., 2015; Zhang et al., 2018). Our results 
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support the idea that sparsely connected networks may behave like dense ones if the representation 
is distributed (Figure 5), providing insight into the regimes in which pruning preserves performance.

Other studies have considered tasks with smooth input- output mappings and low- dimensional 
inputs, finding that heterogeneous Golgi cell inhibition can improve performance by diversifying indi-
vidual granule cell thresholds (Spanne and Jörntell, 2013). Extending our model to include hetero-
geneous thresholds is an interesting direction for future work. Another proposal states that dense 
coding may improve generalization (Spanne and Jörntell, 2015). Our theory reveals that whether or 
not dense coding is beneficial depends on the task.

Assumptions and extensions
We have made several assumptions in our model for the sake of analytical tractability. When comparing 
the inductive biases of networks with different coding levels, our theory assumes that inputs are 
normalized and distributed uniformly in a linear subspace of the input layer activity. This allows us to 
decompose the target function into a basis in which we can directly compare eigenvalues, and hence 
learning performance, for different coding levels (Figure 4E–G). A similar analysis can be performed 
when inputs are not uniformly distributed, but in this case the basis is determined by an interplay 
between this distribution and the nonlinearity of expansion layer neurons, making the analysis more 
complex (see Appendix). We have also assumed that generalization is assessed for inputs drawn from 
the same distribution as used for learning. Recent and ongoing work on out- of- distribution generaliza-
tion may permit relaxations of this assumption (Shen et al., 2021; Canatar et al., 2021a).

When analyzing properties of the granule cell layer, our theory also assumes an infinitely wide 
expansion. When  P  is small enough that performance is limited by number of samples, this assump-
tion is appropriate, but finite- size corrections to our theory are an interesting direction for future 
work. We also have not explicitly modeled inhibitory input provided by Golgi cells, instead assuming 
such input can be modeled as a change in effective threshold, as in previous studies (Billings et al., 
2014; Cayco- Gajic et al., 2017; Litwin- Kumar et al., 2017). This is appropriate when considering the 
dimension of the granule cell representation (Litwin- Kumar et al., 2017), but more work is needed to 
extend our model to the case of heterogeneous inhibition.

Another key assumption concerning the granule cells is that they sample mossy fiber inputs 
randomly, as is typically assumed in Marr- Albus models (Marr, 1969; Albus, 1971; Litwin- Kumar 
et al., 2017; Cayco- Gajic et al., 2017). Other studies instead argue that granule cells sample from 
mossy fibers with highly similar receptive fields (Garwicz et al., 1998; Brown and Bower, 2001; Jörn-
tell and Ekerot, 2006) defined by the tuning of mossy fiber and climbing fiber inputs to cerebellar 
microzones (Apps et al., 2018). This has led to an alternative hypothesis that granule cells serve to 
relay similarly tuned mossy fiber inputs and enhance their signal- to- noise ratio (Jörntell and Ekerot, 
2006; Gilbert and Chris Miall, 2022) rather than to re- encode inputs. Another hypothesis is that 
granule cells enable Purkinje cells to learn piece- wise linear approximations of nonlinear functions 
(Spanne and Jörntell, 2013). However, several recent studies support the existence of heteroge-
neous connectivity and selectivity of granule cells to multiple distinct inputs at the local scale (Huang 
et al., 2013; Ishikawa et al., 2015). Furthermore, the deviation of the predicted dimension in models 
constrained by electron- microscopy data as compared to randomly wired models is modest (Nguyen 
et al., 2023). Thus, topographically organized connectivity at the macroscopic scale may coexist with 
disordered connectivity at the local scale, allowing granule cells presynaptic to an individual Purkinje 
cell to sample heterogeneous combinations of the subset of sensorimotor signals relevant to the tasks 
that Purkinje cell participates in. Finally, we note that the optimality of dense codes for learning slowly 
varying tasks in our theory suggests that observations of a lack of mixing (Jörntell and Ekerot, 2002) 
for such tasks are compatible with Marr- Albus models, as in this case nonlinear mixing is not required.

We have quantified coding level by the fraction of neurons that are above firing threshold. We 
focused on coding levels  f < 0.5 , as extremely dense codes are rarely found in experiments (Olshausen 
and Field, 2004), but our theory applies for  f > 0.5  as well. In general, representations with coding 
levels of  f   and  1 − f   perform similarly in our model due to the symmetry of most of their associated 
eigenvalues (Figure 4—figure supplement 1 and Appendix). Under the assumption that the ener-
getic costs associated with neural activity are minimized, the  f < 0.5  region is likely the biologically 
plausible one. We also note that coding level is most easily defined when neurons are modeled as 
rate, rather than spiking units. To investigate the consistency of our results under a spiking code, we 
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implemented a model in which granule cell spiking exhibits Poisson variability and quantify coding 
level as the fraction of neurons that have nonzero spike counts (Figure 7—figure supplement 1; 
Figure 7C). In general, increased spike count leads to improved performance as noise associated with 
spiking variability is reduced. Granule cells have been shown to exhibit reliable burst responses to 
mossy fiber stimulation (Chadderton et al., 2004), motivating models using deterministic responses 
or sub- Poisson spiking variability. However, further work is needed to quantitatively compare vari-
ability in model and experiment and to account for more complex biophysical properties of granule 
cells (Saarinen et al., 2008).

For the Purkinje cells, our model assumes that their responses to granule cell input can be modeled 
as an optimal linear readout. Our model therefore provides an upper bound to linear readout perfor-
mance, a standard benchmark for the quality of a neural representation that does not require assump-
tions on the nature of climbing fiber- mediated plasticity, which is still debated. Electrophysiological 
studies have argued in favor of a linear approximation (Brunel et al., 2004). To improve the biological 
applicability of our model, we implemented an online climbing fiber- mediated learning rule and found 
that optimal coding levels are still task- dependent (Figure 7—figure supplement 2). We also note 
that although we model several timing- dependent tasks (Figure 7), our learning rule does not exploit 
temporal information, and we assume that temporal dynamics of granule cell responses are largely 
inherited from mossy fibers. Integrating temporal information into our model is an interesting direc-
tion for future investigation.

Implications for cerebellar representations
Our results predict that qualitative differences in the coding levels of cerebellum- like systems, across 
brain regions or across species, reflect an optimization to distinct tasks (Figure 7). However, it is also 
possible that differences in coding level arise from other physiological differences between systems. 
In the Drosophila mushroom body, which is required for associative learning of odor categories, 
random and sparse subsets of Kenyon cells are activated in response to odor stimulation, consistent 
with our model (Figure 7B; Turner et al., 2008; Honegger et al., 2011; Lin et al., 2014). In a model 
of the electrosensory system of the electric fish, the inferred coding level of a model constrained 
by the properties of granule cells is similar to that which optimizes task performance (Figure 7C). 
Within the cerebellar cortex, heterogeneity in granule cell firing has been observed across cerebellar 
lobules, associated with both differences in intrinsic properties (Heath et al., 2014) and mossy fiber 
input (Witter and De Zeeuw, 2015). It would be interesting to correlate such physiological heteroge-
neity with heterogeneity in function across the cerebellum. Our model predicts that regions involved 
in behaviors with substantial low- dimensional structure, for example smooth motor control tasks, 
may exhibit higher coding levels than regions involved in categorization or discrimination of high- 
dimensional stimuli.

Our model also raises the possibility that individual brain regions may exhibit different coding 
levels at different moments in time, depending on immediate behavioral or task demands. Multiple 
mechanisms could support the dynamic adjustment of coding level, including changes in mossy fiber 
input (Ozden et al., 2012), Golgi cell inhibition (Eccles et al., 1966; Palay and Chan- Palay, 1974), 
retrograde signaling from Purkinje cells (Kreitzer and Regehr, 2001), or unsupervised plasticity of 
mossy fiber- to- granule cell synapses (Schweighofer et al., 2001). The predictions of our model are 
not dependent on which of these mechanisms are active. A recent study demonstrated that local 
synaptic inhibition by Golgi cells controls the spiking threshold and hence the population coding 
level of cerebellar granule cells in mice (Fleming et al., 2022). Further, the authors observed that 
granule cell responses to sensory stimuli are sparse when movement- related selectivity is controlled 
for. This suggests that dense movement- related activity and sparse sensory- evoked activity are not 
incompatible.

While our analysis makes clear qualitative predictions concerning comparisons between the 
optimal coding levels for different tasks, in some cases it is also possible to make quantitative 
predictions about the location of the optimum for a single task. Doing so requires determining the 
appropriate time interval over which to measure coding level, which depends on the integration 
time constant of the readout neuron. It also requires estimates of the firing rates and biophysical 
properties of the expansion layer neurons. In the electrosensory system, for which a well- calibrated 
model exists and the learning objective is well- characterized (Kennedy et  al., 2014), we found 

https://doi.org/10.7554/eLife.82914


 Research article Computational and Systems Biology | Neuroscience

Xie et al. eLife 2023;12:e82914. DOI: https://doi.org/10.7554/eLife.82914  16 of 36

that the coding level estimated based on the data is similar to that which optimizes performance 
(Figure 7C).

If coding level is task- optimized, our model predicts that manipulating coding level artificially will 
diminish performance. In the Drosophila mushroom body, disrupting feedback inhibition from the 
GABAergic anterior paired lateral neuron onto Kenyon cells increases coding level and impairs odor 
discrimination (Lin et al., 2014). A recent study demonstrated that blocking inhibition from Golgi 
cells onto granule cells results in denser granule cell population activity and impairs performance on 
an eye- blink conditioning task (Fleming et al., 2022). These examples demonstrate that increasing 
coding level during sensory discrimination tasks, for which sparse activity is optimal, impairs perfor-
mance. Our theory predicts that decreasing coding level during a task for which dense activity is 
optimal, such as smooth motor control, would also impair performance.

While dense activity has been taken as evidence against theories of combinatorial coding in 
cerebellar granule cells (Knogler et al., 2017; Wagner et al., 2019), our theory suggests that the 
two are not incompatible. Instead, the coding level of cerebellum- like regions may be determined 
by behavioral demands and the nature of the input to granule- like layers (Muscinelli et al., 2023). 
Sparse coding has also been cited as a key property of sensory representations in the cerebral cortex 
(Olshausen and Field, 1996). However, recent population recordings show that such regions exhibit 
dense movement- related activity (Musall et  al., 2019), much like in cerebellum. While the theory 
presented in this study does not account for the highly structured recurrent interactions that charac-
terize cerebrocortical regions, it is possible that these areas also operate using inductive biases that 
are shaped by coding level in a similar manner to our model.

Methods
Network model
The expansion layer activity is given by  h = ϕ(Jeffx − θ),  where  Jeff = JA  describes the selectivity of 
expansion layer neurons to task variables. For most simulations,  A  is an  N × D  matrix sampled with 
random, orthonormal columns and  J  is an  M × N   matrix with i.i.d. unit Gaussian entries. The nonlin-
earity  ϕ  is a rectified linear activation function  ϕ(u) = max(u, 0)  applied element- wise. The input layer 
activity  n  is given by  n = Ax. 

Sparsely connected networks
To model sparse excitatory connectivity, we generated a sparse matrix  JE , where each row contains 
precisely  K   nonzero elements at random locations. The nonzero elements are either identical and 
equal to 1 (homogeneous excitatory weights) or sampled from a unit truncated normal distribution 
(heterogeneous excitatory weights). To model global feedforward inhibition that balances excitation, 
 J = JE − JI  , where  JI   is a dense matrix with every element equal to  

1
MN

∑
ij JE

ij  .
For Figure 5B, Figure 6A and B, Figure 7B, sparsely connected networks were generated with 

homogeneous excitatory weights and global inhibition. For Figure 5E, the network with clustered 
representations was generated with homogeneous excitatory weights without global inhibition. 
For Figure 5C and F, networks were generated with heterogeneous excitatory weights and global 
inhibition.

Clustered representations
For clustered input- layer representations, each input layer neuron encodes one task variable (that is, 
 A  is a block matrix, with nonoverlapping blocks of  N/D  elements equal to 1 for each task variable). In 
this case, in order to obtain good performance, we found it necessary to fix the coding level for each 
input pattern, corresponding to winner- take- all inhibition across the expansion layer.

Dimension
The dimension of the expansion layer representation (Figure 3D) is given by Abbott et al., 2011; 
Litwin- Kumar et al., 2017:

https://doi.org/10.7554/eLife.82914
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d =

(
∑

i λi)2

(
∑

i λ
2
i )

,
  

(5)

where  λi  are the eigenvalues of the covariance matrix  C
h
ij = Cov(hi, hj)  of expansion layer responses 

(not to be confused with  λα , the eigenvalues of the kernel operator). The covariance is computed by 
averaging over inputs  x .

Learning tasks
Random categorization task
In a random categorization task (Figure 2E, Figure 7B), the network learns to associate a random 
input pattern  xµ ∈ RD  for  µ = 1, . . . , P  with a random binary category  yµ = ±1 . The elements of  xµ  are 
drawn i.i.d. from a normal distribution with mean 0 and variance  1/D . Test patterns  ̂xµ  are generated 
by adding noise to the training patterns:

 x̂µ =
√

1 − ϵ2xµ + ϵη,  (6)

where  η ∼ N (0, 1
D I) . For Figure 2E, Figure 7B, and Figure 4—figure supplement 2, we set  ϵ = 0.1 .

Gaussian process tasks
To generate a family of tasks with continuously varying outputs (Figure 2D and F, Figure 4F and G, 
Figure 5B, and Figure 6), we sampled target functions from a Gaussian process (Rasmussen and 
Williams, 2006),  f(x) ∼ GP(0, C) , with covariance

 
C(xµ, xν ) = exp

(
− 1

2γ2 ∥xµ − xν∥2
)

,
  

(7)

where  γ  determines the spatial scale of variations in  f(x) . Training and test patterns are drawn uniformly 
on the unit sphere.

Learning of readout weights
With the exception of the ELL task and Figure 7—figure supplement 2, we performed unregularized 
least squares regression to determine the readout weights  w . For the ELL sensory cancellation task 
(Figure 7C), we used  ℓ2  regularization, a.k.a. ridge regression:

 
w = argmin

w′

P∑
µ=1

∥f(xµ) − w′ · h(xµ)∥2 + Mαridge∥w′∥2
2,
  

(8)

where  αridge  is the regularization parameter. Solutions were found using Python’s scikit- learn package 
(Pedregosa, 2011).

In Figure 7—figure supplement 2, we implement a model of an online climbing fiber- mediated 
plasticity rule. The climbing fiber activity  c  is assumed to encode the error between the target and the 
network prediction  c = f(x) − f̂(x) . During each of  Nepochs  training epochs, the  P  training patterns are shuf-
fled randomly and each pattern is presented one at a time. For each pattern µ, the weights are updated 
according to  ∆wµ = η · c · h(xµ) . Parameter values were  P = 30, η = 0.7/M, M = 10,000, Nepochs = 20,000 .

Performance metrics
For tasks with continuous targets, the prediction of the network is given by  ̂f(x) = w · h(x) , where  w  
are the synaptic weights of the readout from the expansion layer. Error is measured as relative mean 

squared error (an expectation across patterns  x  in the test set):  Error = E[(f(x)−̂f(x))2]
x[f(x)2]  . In practice we use 

a large test set to estimate this error over  x  drawn from the distribution of test patterns. For categori-
zation tasks, the network’s prediction is given by  ̂f(x) = sign(w · h(x)) . Performance is measured as the 
fraction of incorrect predictions. Error bars represent standard error of the mean across realizations of 
network weights and tasks.

https://doi.org/10.7554/eLife.82914
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Optimal granule–Purkinje cell weight distribution
We adapted our model to allow for comparisons with Brunel et al., 2004 by constraining readout 
weights  w  to be nonnegative and adding a bias,  f(x) = w · h(x) + b . To guarantee that the target func-
tion is nonnegative, we set  f(x) ∈ {0, 1}  for the random categorization task and  f(x) ← |f(x)|  for the 
Gaussian process tasks. The weights and bias were determined with the Python convex optimization 
package cvxopt (Andersen et al., 2011).

Model of two-joint arm
We implemented a biophysical model of a planar two- joint arm (Fagg et al., 1997). The state of the 
arm is specified by six variables: joint angles  θ1  and  θ2 , angular velocities  ̇θ1  and  ̇θ2 , and torques u1 and 
u2. The upper and lower segments of the arm have lengths l1 and l2 and masses m1 and m2, respec-
tively. The arm has the following dynamics:

 M(θ)θ̈ + C(θ, θ̇)θ̇ = u,  (9)

where  M(θ)  is the inertia matrix and  C(θ, θ̇)  is the matrix of centrifugal, Coriolis, and friction forces:

 

M(θ) =


I1 + I2 + m2l21 + 2m2l1̄l2cos(θ2) I2 + m2l1̄l2cos(θ2)

I2 + m2l1l2cos(θ2) I2


 ,

  
(10)

 

C(θ, θ̇) = m2l1l2sin(θ2)


−2θ̇2 −θ̇2

θ̇1 0


 +


D1 0

0 D2


 ,

  
(11)

where  ̄l2  is the center of mass of the lower arm, I1 and I2 are moments of inertia and D1 and D2 
are friction terms of the upper and lower arm respectively. These parameters were  m1 = 3 kg , 

 m2 = 2.5 kg ,  l1 = 0.3 m ,  l2 = 0.35 m ,  ̄l2 = 0.21 m ,  I1 = 0.1 kg m2
 ,  I2 = 0.12 kg m2

 ,  D1 = 0.05 kg m2/s  and 

 D2 = 0.01 kg m2/s .
The task is to predict the position of the hand based on the forward dynamics of the two- joint 

arm system, given the arm initial condition and the applied torques. More precisely, the  P  network 
inputs  xµ  were generated by sampling 6- dimensional Gaussian vectors with covariance matrix 

 C = diag(σθ ,σθ ,σθ̇ ,σθ̇ ,σu,σu) , to account for the fact that angles, angular velocities and torques 
might vary on different scales across simulations. For our results, we used  σθ = σθ̇ = 0.1  and  σu = 1 . 
Each sample  xµ  was then normalized and used to generate initial conditions of the arm, by setting 

 θ
µ
1 = π

4 + xµ1  ,  θ
µ
2 = π

4 + xµ2  ,  θ̇
µ
1 = xµ3  , and  θ̇

µ
2 = xµ4  . Torques were generated by setting  u

µ
1 = xµ5   and 

 u
µ
2 = xµ6  . The target was constructed by running the dynamics of the arm forward in time for a time 

 δ = 0.2 s , and by computing the difference in position of the “hand” (i.e. the end of the lower segment) 
in Cartesian coordinates. As a result, the target in this task is two- dimensional, with each target dimen-
sion corresponding the one of the two Cartesian coordinates of the hand. The overall performance is 
assessed by computing the error on each task separately and then averaging the errors.

Model of electrosensory lateral line lobe (ELL)
We simulated 20,000 granule cells using the biophysical model of Kennedy et al., 2014. We varied 
the granule cell layer coding level by adjusting the spiking threshold parameter in the model. For each 
choice of threshold, we generated 30 different trials of spike rasters. Each trial is 160ms long with a 
1ms time bin and consists of a time- locked response to an electric organ discharge command. Trial- to- 
trial variability in the model granule cell responses arises from noise in the mossy fiber responses. To 
generate training and testing data, we sampled 4 trials ( P = 640  patterns) from the 30 total trials for 
training and 10 trials for testing (1600 patterns). Coding level is measured as the fraction of granule 
cells that spike at least once in the training data. We repeated this sampling process 30 times.

The targets were smoothed broad- spike responses of 15  MG cells time- locked to an electric 
organ discharge command measured during experiments (Muller et al., 2019). The original data set 
consisted of 55 MG cells, each with a 300ms long spike raster with a 1ms time bin. The spike rasters 
were trial- averaged and then smoothed with a Gaussian- weighted moving average with a 10ms time 
window. Only MG cells whose maximum spiking probability across all time bins exceeded 0.01 after 
smoothing were included in the task. The same MG cell responses were used for both training and 
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testing. To match the length of the granule cell data, we discarded MG cell data beyond 160ms and 
then concatenated 4 copies of the 160ms long responses for training and 10 copies for testing. We 
measured the ability of the model to construct MG cell targets out of granule cell activity, generalizing 
across noise in granule cell responses. Errors for each MG cell target were averaged across the 30 
repetitions of sampling of training and testing data, and then averaged across targets. Standard error 
of the mean was computed across the 30 repetitions.

Model of vestibulo-ocular reflex (VOR)
Recordings of Purkinje cell activity in monkeys suggest that these neurons exhibit piecewise- linear 
tuning to head velocity (Lisberger et al., 1994). Thus, we designed piecewise- linear target functions 
representing Purkinje cell firing rate as a function of head velocity  v , a one- dimensional input:

 

f(v) =




m1(v − c) + b x < c

m2(v − c) + b x ≥ c.  
(12)

Inputs  v  were sampled uniformly from  [−1, 1]  100 times. We generated 25 total target functions 
using all combinations of slopes m1 and m2 sampled from 5 equally spaced points on the interval 

 [−2, 2] . We set  b = 0.1  and  c = −0.2 .
Mossy fiber responses to head velocity input were modeled as exponential tuning curves:

 nj(v) = gj exp(vrj) + bj,  (13)

where gj is a gain term,  rj ∈ ±1  determines a mossy fiber preference for positive or negative velocities, 
and bj is the baseline firing rate. We generated 24 different tuning curves from all combinations of 
the following parameter values: The gain gj was sampled from 6 equally spaced points on the interval 

 [0.1, 1] , rj was set to either –1 or 1, and bj was set to either 0 or 1. Qualitative results did not depend 
strongly on this parameterization. Mossy fiber to granule cell weights were random zero- mean Gauss-
ians. Errors were averaged across targets.
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Appendix 1
1 Connection between kernel and previous theories
Previous theories (Babadi and Sompolinsky, 2014; Litwin- Kumar et  al., 2017) studied 
generalization performance for random clusters of inputs associated with binary targets, where test 
patterns are formed by adding noise to training patterns (Figure 4A). The readout is trained using 
a supervised Hebbian rule with mean- subtracted expansion layer responses,  w =

∑
µ yµ(hµ − h̄) , 

with  h̄ = 1
P
∑P

µ=1 hµ
 . The net input to a readout in response to a test pattern  ̂hµ

  from cluster µ is 

 gµ = w · (ĥµ − h̄) . The statistics of  gµ  determine generalization performance. For a Hebbian readout, 
the error rate is expressed in terms of the signal- to- noise ratio (SNR) (Babadi and Sompolinsky, 
2014):

 
P(Error) = 1

2
erfc

(√
SNR/2

)
.
  

(A1)

SNR is given in terms of the mean and variance of  gµ :

 
SNR =

(
Eµ[yµgµ]

)2

Var(gµ)
.
  

(A2)

The numerator of SNR is proportional to the average overlap of the expansion layer representations 
of training and test patterns belonging to the same cluster, which can be expressed in terms of the 
kernel function  K  :

 
E
µ

[
yµgµ

]
= E

µ

[
(ĥµ − h̄) · (hµ − h̄)

]
= MEµ

[
K(x̂µ, xµ)

]
− h̄ · h̄.

  (A3)

For large networks with Gaussian i.i.d. expansion weights,  K(x̂µ, xµ) = K(t) , where  t = x̂µ · xµ , and 
the above equation reduces to  MK(ttrain/test) − h̄ · h̄ , where  ttrain/test  is the typical overlap of training 
and test patterns belonging to the same cluster. When  xµ · xµ = 1 ,  ttrain/test  can be written as 

 ttrain/test = 1 −∆ , where Δ is a measure of within- cluster noise (Babadi and Sompolinsky, 2014; 
Litwin- Kumar et al., 2017).

Babadi and Sompolinsky, 2014 demonstrated that, for random categorization tasks and when  M   
and  D  are large,  Var

(
gµ

)
= C( 1

M + Q2 1
D )  where  C  is a constant and  Q ∈ [0, 1]  is given by

 

Q2 =

1
Zh

Eµ ̸=ν
[
((hµ − h̄) · (hν − h̄))2

]

1
Zx

Eµ ̸=ν
[
(xµ · xν )2

] ,

  

(A4)

assuming the entries of  x  are zero- mean.  Za = Eµ[∥aµ − ā∥2]  for  a ∈ {h, x}  normalizes the overlaps 
to the typical overlap of a pattern with itself. The quantity  Q2

  is the ratio of the variance of overlaps 
between patterns belonging to different clusters in the expansion layer to that of the input layer. 
This describes the extent to which the geometry of the input layer representation is preserved in 
the expansion layer. When overlaps in the input layer are small, as they are for random clusters, 

 
1
Zh

(hµ − h̄) · (hν − h̄) ≈ Q
Zx

· (xµ · xν )  as  M → ∞ . This relation illustrates that, for random clusters and 
 M → ∞ ,  Q  is equal to the slope of the normalized kernel function  K(t)  evaluated at  t = 0 . Litwin- 
Kumar et al., 2017 also showed that the dimension of the expansion layer representation is equal 
to 

 
C′

( 1
M +Q2 1

D ) 
, where  C′  is a constant.

Thus, for the random categorization task studied in Babadi and Sompolinsky, 2014; Litwin- 
Kumar et al., 2017, dimension and readout SNR can be calculated by evaluating  K(ttrain/test)  and the 
slope of  K(t)  at  t = 0 .

2 Dot-product kernels with arbitrary threshold
As  M → ∞ , the normalized dot product between features (Equation 2) converges pointwise to

 
K(x, x′) = E

J1

[
ϕ(JT

1x − θ)ϕ(JT
1x′ − θ)

]
,
  (A5)
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where  J1  is a row of the weight matrix  J  (without loss of generality, the first row) with entries drawn 
i.i.d. from a Gaussian distribution  N (0, 1) . Our goal is to compute Equation A5 for a given  θ  and 
inputs drawn on the unit sphere  x, x′ ∈ SD−1 .

Because the Gaussian weight distribution is spherically symmetric, Equation A5 restricted to the 
unit sphere for any nonlinearity is only a function of the dot- product  t := xTx′ , making the kernel a 
dot- product kernel  K(x, x′) = K(t) .

Denote by  Ji  the entries of  J1 . Let  I1 =
∑D

i=1 Jixi  and  I2 =
∑D

i=1 Jix′i  be the pre- activations for each 
input. Then  (I1, I2)  are jointly Gaussian with mean 0, variance 1, and covariance  E[I1I2] = t . If  t > 0 , 
we can re- parameterize these pre- activations as the sum of an independent and shared component 

 Ii = yi
√

1 − t + z
√

t , where  yi ∼ N (0, 1)  for  i = 1, 2  and  z ∼ N (0, 1) . In these coordinates, Equation 
A5 becomes

 

K(t) = E
y1,y2,z

[
ϕ(y1

√
1 − t + z

√
t − θ)ϕ(y2

√
1 − t + z

√
t − θ)

]

= E
z

[
E
y1

[ϕ(y1
√

1 − t + z
√

t − θ)|z] E
y2

[ϕ(y2
√

1 − t + z
√

t − θ)|z]
]

= E
z

[
E
y1

[ϕ(y1
√

1 − t + z
√

t − θ)|z]2
]

,
  

(A6)

where the second line follows from the conditional independence of  h1|z  and  h2|z  and the third 
from the fact that they are identically distributed. Similarly, if  t < 0 , we can write  I1 = y1

√
1 − t + z

√
t , 

 I2 = y2
√

1 − t − z
√

t .
We will use Equation A6 to solve for the kernel assuming  ϕ  is a ReLU nonlinearity. Let

 g1(t, z) = E[ϕ(y1
√

1 − t + z
√

t − θ)|z].  (A7)

Using the fact that  ϕ  is nonzero only when  y1
√

1 − t + z
√

t − θ > 0 , i.e. for 
 
y1 > T = θ−z

√
t√

1−t  
, we 

obtain

 

g1(t, z) = (2π)−1/2 ´∞
T (y1

√
1 − t + z

√
t − θ)e−y2

1/2dy1

=
(

1 − t
2π

)1/2
e−T2/2 +

(
z
√

t − θ

2

)
erfc(T/

√
2).

  

(A8)

Performing a similar calculation for  t < 0  and collecting the results leads to:

 

K(t) =




Ez
[
g1(t, z)2

]
t > 0

Ez
[
g1(|t|, z)g2(|t|, z)

]
t < 0

,
  

(A9)

 
g1(t, z) =

(
1 − t
2π

)1/2
e−T2/2 +

(
z
√

t − θ

2

)
erfc(T1/

√
2)

  
(A10)

 
g2(t, z) =

(
1 − t
2π

)1/2
e−T2/2 +

(
−z

√
t − θ

2

)
erfc(T2/

√
2)

  
(A11)

 
T1 = θ − z

√
t√

1 − t
, and T2 = θ + z

√
t√

1 − t
.
  

(A12)

3 Spherical harmonic decompositions
Our theory of generalization requires us to work in function spaces which are natural to the problem. 
The spherical harmonics are the natural basis for working with dot- product kernels on the sphere. 
For a thorough treatment of spherical harmonics, see Atkinson and Han, 2012, whose notation we 
generally follow. Both our kernel and Gaussian process (GP) tasks are defined over the sphere in  D  
dimensions

 SD−1 = {x ∈ RD : ∥x∥2 = 1}.  (A13)
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A spherical harmonic  Ykm(·) —where  k  indexes frequency and  m  indexes modes of the same 
frequency—is a harmonic homogeneous polynomial of degree  k  restricted to the sphere  SD−1 . For 
each frequency  k ∈ Z , there are  N(D, k)  linearly independent polynomials, where

 
N(D, k) = 2k + D − 2

k
(k+D−3

k−1
)
.
  

(A14)

3.1 Decomposition of the kernel and target function
We remind the reader here of the setting for our theory:

1. Ridge regression using random features with a dot- product limiting kernel.
2. Data drawn uniformly from the unit sphere.

Let  σ  be the Lebesgue measure on  SD−1 . We will denote the surface area of the sphere as

 

∣∣∣SD−1
∣∣∣ =
ˆ

SD−1
dσ = 2πD/2

Γ(D/2)
.
  

(A15)

On the other hand, the uniform probability measure on the sphere, denoted by  ̄σ , must integrate 
to 1, so  ̄σ = σ/|SD−1| . Finally, we define the space of real- valued square integrable functions  L2(σ)  as 
the Hilbert space with inner product

 
⟨f, g⟩L2(σ) =

ˆ

SD−1
f(x)g(x) dσ(x)

  
(A16)

and  ∥f∥L2(σ) = ⟨f, f⟩1/2
L2(σ) . The space  L2(σ̄)  is defined analogously.

Eigendecompositions describe the action of linear operators, not functions, thus we must associate 
a linear operator with our kernel for its eigenvalues to make sense. The kernel eigenvalues  λα  that 
we will use to compute the error are the eigenvalues of the integral operator  TK : L2(σ̄) → L2(σ̄)  
defined as

 
(TKf)(x) = ⟨K(x, ·), f(·)⟩L2(σ̄) =

ˆ

SD−1
K(x, x′)f(x′)dσ̄(x′).

  
(A17)

This is because  ̄σ  is the data distribution, and these eigenvalues are approximated by the 
eigenvalues of the kernel matrix evaluated on a large but finite dataset (Koltchinskii et al., 2000). 
Similarly, we define the analogous operator  UK : L2(σ) → L2(σ)  under the measure  σ  with eigenvalues 

 ξα . Since  TK = UK/|SD−1| , the eigenvalues are related by

 
λα = ξα

|SD−1|
,
  

(A18)

and they share the same eigenfunctions, up to normalization. For the rest of this section we will study 
eigendecompositions of operator  UK  , which may be translated into statements about  TK   via (18) 
(These differences are liable to cause some confusion and pain when reading the literature).

Under mild technical conditions that our kernels satisfy, Mercer’s theorem states that positive 
semidefinite kernels can be expanded as a series in the orthonormal basis of eigenfunctions  ψα  
weighted by nonnegative eigenvalues  ξα :

 
K(x, x′) =

∑
α

ξαψα(x)ψα(x′).
  

(A19)

Again,  (λα,ψα)  are eigenpairs for the operator  UK   and form an orthonormal set under the  L2(σ)  
inner product.

As stated earlier, the kernel (Equation A5) is spherically symmetric and thus a dot- product kernel. 
Because of this, we can take the eigenfunctions  ψα  to be the spherical harmonics  Ykm . The index 
 α  is a multi- index into mode  m  of frequency  k . Writing the Mercer decomposition in the spherical 
harmonic basis gives:

https://doi.org/10.7554/eLife.82914
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K(x, x′) =

∞∑
k=0

ξk

N(D,k)∑
m=1

Ykm(x)Ykm(x′).
  

(A20)

Because our kernel is rotation invariant, all  N(D, k)  harmonics of frequency  k  share eigenvalue  ξk .
Any function in  L2(σ)  can be expanded in the spherical harmonic basis as follows:

 
f(x) =

∞∑
k=0

N(D,k)∑
m=1

ckmYkm(x), with ckm = ⟨f, Ykm⟩L2(σ).
  

(A21)

The expansion is analogous to that of the Fourier series. In fact when  D = 2 , the spherical 
harmonics are sines and cosines on the unit circle.

3.2 Ultraspherical polynomials
Adding together all harmonics of a given frequency relates them to a polynomial in  t  by the addition 
formula

 

N(D,k)∑
m=1

Ykm(x)Ykm(x′) = N(D, k)
|SD−1|

Pk,D(xTx′).
  

(A22)

The polynomial  Pk,D(t)  is the  k  th ultraspherical polynomial. These are also called Legendre or 
Gegenbauer polynomials, although these usually have different normalizations and can be defined 
more generally.

The ultraspherical polynomials  {Pk,D}  form an orthogonal basis for

 L2([−1, 1], (1 − t2)(D−3)/2dt).  

As special cases,  Pk,2(t)  and  Pk,3(t)  are the classical Chebyshev and Legendre polynomials, 
respectively. For any  D , the first two of these polynomials are  P0(t) = 1  and  P1(t) = t . We use the 
Rodrigues formula (Atkinson and Han, 2012), which holds for  k ≥ 0  and  D ≥ 2 , to generate these 
polynomials:

 
Pk,D(t) = (−1/2)k Γ((D − 1)/2)

Γ(k + (D − 1)/2)
(1 − t2)(3−D)/2

(
t

)k
(1 − t2)k+(D−3)/2.

  
(A23)

Combining Equation A20 with the addition formula (Equation A22), we can express the kernel 
in terms of ultraspherical polynomials evaluated at the dot- product of the inputs:

 
K(t) =

∞∑
k=0

ξk
N(D, k)
|SD−1|

Pk,D(t).
  

(A24)

3.3 Computing kernel eigenvalues
The Funk- Hecke theorem states that

 

ˆ

x∈SD−1
K(xTx′)Yk(x′)dσ(x′) = |SD−2|Yk(x)

ˆ 1

−1
K(t)Pk,D(t)(1 − t2)(D−3)/2dt.

  
(A25)

Equation A25 implies that the eigenvalues of  UK   are given as

 
ξk = |SD−2|

ˆ 1

−1
K(t)Pk,D(t)(1 − t2)(D−3)/2dt.

  
(A26)

For our kernels, the kernel eigenvalues can be conveniently computed using polar coordinates. 
When the entries of  J1  are i.i.d. unit Gaussian,

 

K(t) =
´
RD ϕ(JT

1x − θ)ϕ(JT
1x′ − θ)(2π)−D/2e−∥J1∥2/2 d(J1)1 · · · d(J1)D

= (2π)−D/2 ´∞
0 e−r2/2rD−1 ´

SD−1 ϕ(rĴTx − θ)ϕ(rĴTx′ − θ)dσ(Ĵ)dr,  

https://doi.org/10.7554/eLife.82914


 Research article Computational and Systems Biology | Neuroscience

Xie et al. eLife 2023;12:e82914. DOI: https://doi.org/10.7554/eLife.82914  28 of 36

where  ̂x = J1/r  and  r = ∥J1∥ . The ReLU nonlinearity is positively homogeneous, so 

 ϕ(rĴTx − θ) = rϕ(ĴTx − θ/r) . We can write

 

K(t) = (2π)−D/2 ´∞
0 e−r2/2rD+1

ˆ

SD−1
(ĴTx − θ/r)+(ĴTx′ − θ/r)+dσ(Ĵ)

︸ ︷︷ ︸
:=Kshell(t;θ/r)

dr

= (2π)−D/2 ´∞
0 e−r2/2rD+1Kshell(t; θ/r)dr,   

(A27)

where we have introduced a new kernel  Kshell(t; θ)  which is  |SD−1|  times the dot- product kernel that 
arises when the weights are distributed uniformly on the sphere ( σ  is not the probability measure). 
The above equation shows that the network restricted to inputs  x, x′ ∈ SD−1  has different kernels 
depending on whether the weights are sampled according to a Gaussian distribution or uniformly 
on the sphere. Without the threshold, this difference disappears due to the positive homogeneity of 
the ReLU (Churchland et al., 2010).

Next we expand the nonlinearity in the spherical harmonic basis (following Bietti and Bach, 
2021; Bach, 2017)

 
ϕ(ĴTx − θ) = (ĴTx − θ)+ =

∞∑
k=0

ak(θ)
N(D,k)∑

j=1
Ykj(Ĵ)Ykj(x),

  
(A28)

where the  k  th coefficient is given by the Funk- Hecke formula (Equation A25) as

 
ak(θ) = |SD−2|

1́

−1
(t − θ)+Pk(t)(1 − t2)(D−3)/2dt,

  
(A29)

and we explicitly note the dependence on  θ . Using the representation Equation A28, we can recover 
the eigendecomposition:

 

Kshell(t; θ) =
´
SD−1 (ĴTx − θ)+(ĴTx′ − θ)+dσ(Ĵ)

=
∑
k,k′

ak(θ)ak′ (θ)
∑
j,j′

Ykj(x)Yk′j′ (x′)
ˆ

SD−1
Ykj(Ĵ)Yk′j′ (Ĵ)dσ(Ĵ)

� �� �
δkk′δjj′

=
∑
k

ak(θ)2 ∑
j

Ykj(x)Ykj(x′)

=
∑
k

ak(θ)2 N(k, D)
|SD−1|

Pk(t),
  

(A30)

which follows from orthonormality and the addition formula (Equation A22). We have that  ak(θ)2
  is 

the  k  th eigenvalue of  Kshell(t; θ) .
Using Equation A30 in Equation A27 leads to

 
K(t) =

∑
k

N(k, D)
|SD−1|

Pk(t)(2π)−D/2
ˆ ∞

0
e−r2/2rD+1ak(θ/r)2dr,

  
(A31)

i.e. the eigenvalues satisfy

 
ξk = (2π)−D/2

ˆ ∞

0
e−r2/2rD+1ak(θ/r)2dr.

  
(A32)

3.3.1 Eigenvalues of  Kshell 
It is possible to compute  ak(θ)  analytically (Bietti and Bach, 2021; Bach, 2017). Letting

 
Iα,k(θ) =

ˆ 1

θ
tαPk(t)(1 − t2)(D−3)/2dt,

  
(A33)

we have that Equation A29 reduces to  ak(θ) = |SD−2|
(
I1,k(θ∗) − θI0,k(θ∗)

)
 . Equation A33 requires 

 θ ∈ [−1, 1] , but  θ/r → ±∞  in Equation A32 as  r → 0 . So we take  θ
∗ = min(max(θ,−1), 1) , which still 

assures that Equation A29 is satisfied. For the rest of this section, assume wlog that  θ ∈ [−1, 1) .
Using Rodrigues’ formula (Equation A23) in Equation A33 gives
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Iα,k(θ) = (−1/2)k Γ((D − 1)/2)
Γ(k + (D − 1)/2)� �� �

:=C

´ 1
θ tα

(
d
dt

)k
(1 − t2)k+(D−3)/2dt

= C
´ 1
θ tα

(
d
dt

)k
(1 − t2)k+(D−3)/2dt

  

which may be integrated by parts. We will treat  α = 0  and 1 separately.
In the case of  α = 0 , since  tα = 1  we have the integral of a derivative, so for  k ≥ 1 

 

I0,k(θ) = C
´ 1
θ

(
d
dt

)k
(1 − t2)k+(D−3)/2dt

= C
(

d
dt

)k−1
(1 − t2)k+(D−3)/2

�����
1

θ

= −C
(

d
dt

)k−1
(1 − t2)k+(D−3)/2

�����
t=θ

(k ≥ 1)
  

When  k = 0  we find that

 

I0,0(θ) =
´ 1
θ (1 − t2)(D−3)/2dt

= t 2F1(1/2, (3 − D)/2; 3/2; t2)
∣∣∣
1

θ

=
√
πΓ((D − 1)/2)

2Γ(D/2)
− θ 2F1(1/2, (3 − D)/2; 3/2; θ2).

  

For  α = 1 , we integrate by parts once and find that for  k ≥ 2 ,

 

I1,k(θ) = C
´ 1
θ t

(
d
dt

)k
(1 − t2)k+(D−3)/2dt

= C


 t

(
d
dt

)k−1
(1 − t2)k+(D−3)/2

�����
1

θ

−
´ 1
θ

(
d
dt

)k−1
(1 − t2)k+(D−3)/2dt




= C


 t

(
d
dt

)k−1
(1 − t2)k+(D−3)/2

�����
1

θ

−
(

d
dt

)k−2
(1 − t2)k+(D−3)/2

�����
1

θ




= C

[(
d
dt

)k−2
(1 − t2)k+(D−3)/2 − t

(
d
dt

)k−1
(1 − t2)k+(D−3)/2

]�����
t=θ

(k ≥ 2)
  

When  α = 0 , we have a straightforward integral

 

I1,0(θ) =
´ 1
θ t(1 − t2)(D−3)/2dt

= (1 − θ2)(D−1)/2

(D − 1)
= I0,1(θ).

  

Finally, for  k = 1 , we obtain

 

I1,1(θ) =
´ 1
θ t2(1 − t2)(D−3)/2dt

= (t3/3) 2F1(3/2, (3 − D)/2; 5/2; t2)
∣∣∣
1

θ

=
√
πΓ((D − 1)/2)

4Γ((D + 2)/2)
− (θ3/3) 2F1(3/2, (3 − D)/2; 5/2; θ2)

  

3.3.2 Properties of the eigenvalues of  Kshell 
The above show that for  k ≥ 2 
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ak = |SD−2|(I1,k(θ) − θI0,k(θ)) ∝

(
d
dt

)k−2
(1 − t2)k+(D−3)/2

�����
t=θ

.
  

(A34)

Taking  θ = −1  leads to  ak = 0 , since fewer derivatives than  k + (D − 3)/2  appear in Equation 
A34, which reflects the fact that higher degree ultraspherical polynomials are orthogonal to a linear 
function. Furthermore, since  1 − t2  is an even function, the parity of ak as a function of  θ  matches the 
parity of  k . However, ak appears squared in Equation A32, so  ξk  will always be an even function of  θ . 
This explains the parity symmetry of the eigenvalues with coding level for  k ≥ 2 . Also, Equation A34 
for  θ = 0  gives  ak = 0  when  k  is odd, as was shown by Bach, 2017; Basri et al., 2019. This is because

 

(
d
dt

)p
(1 − t2)p+ℓ

����
t=0

=
(

d
dt

)p
(1 − t)p+l(1 + t)p+l

����
t=0

=
∑p

j=0
(p

j
)((

d
dt

)j
(1 − t)p+l

)((
d
dt

)p−j
(1 + t)p+l

)�����
t=0

=
∑p

j=0
(p

j
)
(−1)j

((
d
dt

)j
(1 + t)p+l

)((
d
dt

)p−j
(1 + t)p+l

)�����
t=0

= 0 if p is odd,   

because the  j  and  p − j  terms have opposite parity and cancel.
We may also compute the tail asymptotics of these eigenvalues for large  k . Let  p = k − 2  and 

 ℓ = (D + 1)/2 , so we want to evaluate

 

(
d
dt

)p
(1 − t2)p+ℓ = p!

2πi
¸ (1 − z2)p+ℓ

(z − t)p+1 dz

= p!
2πi
¸

e(p+o(p))F(z)dz
  

for large  p  at  t = θ ∈ (−1, 1) . The first line follows from Cauchy’s intergral formula for a counterclockwise 
contour encircling  t , and the second comes from defining

 F(z) := log(1 − z2) − log(z − t) ∼ (1 + ℓ/p) log(1 − z2) − (1 + 1/p) log(z − t),  

when  p  is large and  ℓ  is constant. We will use the saddle point method (Butler, 2007) to evaluate the 
contour integral asymptotically, ignoring the  o(p)  term in the exponent. Note that the only singularity 
in the original integrand occurs at  z = t .

The function  F  has derivatives

 
F′(z) = −2z

1 − z2 − 1
z − t

,
  

 
F′′(z) = 1

(z − t)2 − 4z2

(1 − z2)2 − 2
1 − z2 .

  

We find the saddle points by setting  F ′(z) = 0 . This leads to a quadratic equation with two roots: 

 z± = t ±
√

t2 − 1 = sgn(t)(|t| ± i
√

1 − t2) . Since these are evaluated at  t = θ  with  |θ| < 1 , both roots 
are complex,  |z±| = 1 , and  F ′′(z±) ̸= 0 . Also, the saddle points avoid the singularity in the original 
integrand, so we can deform our contour to pass through these points and apply the standard 
approximation.

Applying the saddle point approximation, we obtain
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(
d
dt

)p
(1 − t2)p+ℓ ≃ p!

2πi
¸

epF(z)dz

≃ p!
2πi

∑
z0∈{z+,z−} epF(z0)ei(π−arg F′′(z0))/2

(
2π

p|F′′(z0)|

)1/2

≤ cp!
∑

z0∈{z+,z−} epF(z0)p−1/2

= cp! p−1/2
((

1 − z2
+

z+ − t

)p

+

(
1 − z2

−
z− − t

)p)

= cp! p−1/2
((

−2z+
)p +

(
−2z−

)p
)

≤ 2cp! p−1/2(−2)p
  

for some  c  which is constant in  p  and depends on  D . In the last step, we use that  z
p
+ + zp

− ≤ 2  since 
 z±  are conjugate pairs with magnitude 1.

Now recall the full equation for the coefficients:

 
ak = |SD−2|(−1/2)k Γ((D − 1)/2)

Γ(k + (D − 1)/2)

(
d
dt

)p
(1 − t2)p+ℓ.

  

Plugging in the result from the saddle point approximation, substituting  p = k − 2 , and dropping 
all terms that are constant in  k , we find that

 

ak ≤ C′(−1/2)k (k − 2)! k−1/2(−2)k

Γ(k + (D − 1)/2)
= C′k−1/2 Γ(k − 1)

Γ(k + (D − 1)/2)
= C′k−D/2−1,   

where  C′  is a new constant. The rate of  k−D/2−1  is the same decay rate found by Bach, 2017; Bietti 
and Bach, 2021 using a different mathematical technique for  θ = 0 . These decay rates are important 
for obtaining general worst- case bounds for kernel learning of general targets; (Bach, 2012) is an 
example.

3.4 Gaussian process targets
Taking our target function to be a GP on the unit sphere  f(x) ∼ GP(0, C)  with some covariance function 
 C : SD−1 × SD−1 → R , we can represent our target function by performing an eigendecomposition 
of the covariance operator  UC . When  C  itself is spherically symmetric and positive definite, this 
becomes

 
C(xµ, xν ) =

∞∑
k=0

ρk

N(D,k)∑
m=1

Ykm(xµ)Ykm(xν ),
  

(A35)

where  ρk > 0  are the eigenvalues. Then a sample from the GP with this covariance function is a 
random series

 
f(x) =

∞∑
k=0

√
ρk

N(D,k)∑
m=1

gkmYkm(x),
  

(A36)

where  gkm ∼ N (0, 1)  by the Kosambi- Karhunen–Loève theorem (Kosambi, 1943). In other words, the 
coefficient of  Ykm  in the series expansion of  f(x)  is  ckm = √

ρkgkm .
We take the squared exponential covariance on the sphere

 
C(xµ, xν ) = exp

(
−∥xµ − xν∥2

2γ2

)
= exp

(
t − 1
γ2

)
,
 
 
 

(A37)

for  t = xµ · xν  and length scale  γ .
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3.5 Numerical details
All of our spherical harmonic expansions are truncated at frequency  Nk . This is typically  Nk = 50  for 
experiments in  D = 3  dimensions. In higher dimensions,  N(D, k)  grows very quickly in  k , requiring 
truncation at a lower frequency.

To compute the kernel eigenvalues  λk , we can either numerically integrate the Funk- Hecke 
formula (Equation A25) or compute the coefficients  ak(θ/r)  semi- analytically, following Equation 
A34, then integrate Equation A32 with numerical quadrature and rescale by Equation A18.

We use the Funk- Hecke formula (Equation A25) and numerical quadrature to find  ρk . To compute 
the expected error using Equation A38, we use  E[c2

α] = ρk . After generating a sample from the GP, 
we normalize the functions by dividing the labels and coefficients by their standard deviation. This 
ensures that the relative mean squared error is equivalent to the mean squared error computed in 
the next section.

4 Calculation of generalization error
The generalization error of kernel ridge regression is derived in Canatar et al., 2021a; Simon et al., 
2021; Gerace et al., 2021, which show that the mean squared error, in the absence of noise in the 
target, can be written as

 
E
x

(f(x) − f̂(x))2 =
∑
α

βαc2
α,

  
(A38)

where  βα  depend on  P  and the kernel but not on the target, and  cα  are the coefficients (Equation 
A21) of the target function in the basis  L2(σ) . The exact form of this expression differs from that given 
in Canatar et al., 2021b due to differences in the conventions we take for our basis expansions. 
Specifically,

 
βα =

(
1

1 − χ

)(
κ

λαP + κ

)2
,
  

(A39)

where  α  indexes the kernel eigenfunctions and

 
χ =

∑
α

λ2
αP

(λαP + κ)2 ,
  

(A40)

 
κ = αridge +

∑
α

λακ

λαP + κ
,
  

(A41)

with  αridge  the ridge parameter. Note that Equation A41 is an implicit equation for  κ , which we solve 
by numerical root- finding.

Thus,

 
E
x

(f(x) − f̂(x))2 = C1
∑
α

(
cα

λα + C2

)2
,
  

(A42)

with 
 
C1 =

(
1

1−χ

)
κ2

P2  
 and  C2 = κ

P .

5 Dense-sparse networks
To compare with more realistic networks, we break the simplifying assumption that  Jeff   is densely 
connected and instead consider sparse connections between the input and expansion layer. Consider 
a random matrix  Jeff = JA , where  A ∈ RN×D  and  J ∈ RM×N  , with  N > D  and  M > N  . The entries of  A  
are i.i.d. Gaussian, i.e.  Aij ∼ N

(
0, 1/D

)
 . In contrast,  J  is a sparse matrix with exactly K nonzero entries 

per row, and nonzero entries equal to  1/
√

K  . With these scaling choices, the elements of  Jeff   are of 
order  1/

√
D , which is appropriate when the input features xi are order 1. This is in contrast to the rest 

of this paper, where we considered features of order  1/
√

D  and therefore assumed order 1 weights. 
The current scaling allows us to study the properties of  Jeff   for different values of  D ,  N   and  K  .

First, we examine properties of  Jeff = JA  under these assumptions. Recall that the rows of  Jeff   are 
the weights of each hidden layer neuron. Since  Jeff   is Gaussian, any given row  J

eff
i ∈ RD

  is marginally 
Gaussian and distributed identically to any other row. But the rows are not independent, since they 
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are all linear combinations of the rows of  A . Thus, the kernel limit of an infinitely large dense- sparse 
network is equal to that of a fully dense network, but convergence to that kernel behaves differently 
and requires taking a limit of both  N, M → ∞ . In this section, we study how finite  N   introduces extra 
correlations among the rows of  Jeff   compared to dense networks.

The distribution of  Jeff   is spherically symmetric in the sense that  Jeff   and  JeffQ  have the same 
distribution for any rotation matrix  Q ∈ RD×D

 . In contrast, a densely connected network with weights 
 G  drawn i.i.d. as  Gij ∼ N (0, 1/D)  will of course have independent rows and also be spherically 
symmetric. The spherical Gaussian is the only vector random variable which is spherically symmetric 
with independent entries (Nash and Klamkin, 1976). Furthermore, each row of  G  may be rotated by 
a different orthogonal matrix and the resulting random variable would still have the same distribution.

With these symmetry considerations in mind, the statistics of the rows of  Jeff   can be described by 
their multi- point correlations. The simplest of these is the two- point correlation, which in the case of 
spherical symmetry is captured by the overlaps:

 
νij :=

D∑
k=1

(Jeff)ik(Jeff)jk =
D∑

k=1

N∑
m,n=1

JinAnkJjmAmk .
  

(A43)

The overlap  νij  is doubly stochastic: one source of stochasticity are the elements of  A , and 
the second one is the random sampling of nonzero elements of  J . Ideally, we are interested in 
studying the statistics of  νij  when varying  i  and  j , i.e. when  J  varies (since the rows of  J  are sampled 
independently from each other). However, this will leave us with the quenched disorder given by the 
specific realization of  A . To obtain a more general and interpretable result, we want to compute the 
probability distribution

 

PA,J
(
νij
)

= E
A


E

J


δ


νij −

D∑
k=1

N∑
m,n=1

JinJjmAnkAmk






 .

  
(A44)

Notice that the order in which we perform the averaging is irrelevant.

5.1Computation of the moment-generating function
Instead of computing directly the probability distribution in Equation A44, we compute the moment- 
generating function

 
Z(µ) := E

A

[
E
J

[
exp

(
µνij

)]]
,
  

(A45)

which fully characterizes the probability distribution of  νij . We indicate the set of indices in which 
the  i - th row of  J  takes nonzero values by  S

i = {Si
1, Si

2, . . . , Si
K}  such that  JiSi

l
̸= 0 ,  ∀l = 1, . . . , K  , and 

analogously for the  j - th row. We also indicate the intersection  Sij = Si ∩ Sj , i.e. the set of indices in 
which both the  i - th and the  j - th rows are nonzero.  Sij  has size  0 ≤ |Sij| ≤ K  . Notice that setting  i = j  
causes  |Sij| = K   deterministically. With this definitions, the overlap can be written as

 
νij =

D∑
k=1

∑

m∈Si

∑

n∈Sj

JinJjmAnkAmk = 1
K

D∑
k=1

∑

m∈Si

∑

n∈Sj

AnkAmk
  

(A46)

We start by perform swapping the averaging order in Equation A45 and averaging over  A .

 

Z(µ) = E
J

[´ (∏N
m=1

∏D
l=1 DAml

)
exp

(µ

K
∑D

k=1
∑

m∈Si
∑

n∈Sj AnkAmk

)]

= E
J

[´ (∏
m∈Si∪Sj

∏D
l=1 DAml

)
exp

(µ

K
∑D

k=1
∑

m∈Si
∑

n∈Sj AnkAmk

)]

= E
J

[∏D
k=1
´ (∏

m∈Si∪Sj DAmk
)

exp
(µ

K
∑

m∈Si
∑

n∈Sj AnkAmk

)]
,

  

where in the first equality we marginalized over all the elements of  A  which do not enter the definition 
of  νij , i.e. we went from having to integrate over  N × D  variables to only  |Si ∪ Sj| × D = (2K − |Sij|) × D  
variables. In the second equality we factorized the columns of  A .

We now explicitly compute integral for a fixed value of  k , by reducing it to a Gaussian integral:
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´ (∏
m∈Si∪Sj DAmk

)
exp

(µ

K
∑

m∈Si
∑

n∈Sj AnkAmk

)

=
´ (∏

m∈Si∪Sj dAmk
)

(2πD)
−

|Si ∪ Sj|
2 exp

(
µ

K
∑

m∈Si
∑

n∈Sj AnkAmk −
D
2
∑

r∈Si∪Sj A2
rk

)

=
´ (∏

m∈Si∪Sj dAmk
)

(2πD)
−

|Si ∪ Sj|
2 exp

(
−D

2
∑

r∈Si∪Sj ArkPrsAsk

)

= det(P)−1/2,   

where  P ∈ R|Si∪Sj |×|Si∪Sj | , which has a 3- by- 3 block structure and can be written as

 

P =




IK−|Sij | − µ

KD
1|Sij | − µ

KD
1K−|Sij |

− µ

KD
1⃗|Sij |×(K−|Sij |) I|Sij | − 2 µ

KD
1|Sij | − µ

KD
1|Sij |×(K−|Sij |)

− µ

KD
1K−|Sij | − µ

KD
1|Sij |×(K−|Sij |) IK−|Sij |


 ,

  

(A47)

where  In  is the  n - by- n  identity matrix and  Jeff   is the  n - by- m  matrix of all ones (if  m  is omitted, then 
it is  n - by- n ). Due to the block structure, the determinant of the matrix above is identical to the 
determinant of a 3- by- 3 matrix

 

det(P) = det




1 − µ

KD
|Sij| − µ

KD
(K − |Sij|)

− µ

KD
(K − |Sij|) 1 − 2 µ

KD
|Sij| − µ

KD
(K − |Sij|)

− µ

KD
(K − |Sij|) − µ

KD
|Sij| 1




= K2D2 − K2µ2 + |Sij|2µ2 − 2DK|Sij|µ
K2D2 .

  

(A48)

By plugging this result into the expression for the moment- generating function, we have that

 

Z(µ) = E
J



(

K2D2 − K2µ2 + |Sij|2µ2 − 2DK|Sij|µ
K2D2

)−D/2

 .

  
(A49)

This expression is our core result, and needs to be averaged over  J . This average can be written 
explicitly by noticing that, when  i ̸= j ,  |Sij|  is a random variable that follows a hypergeometric 
distribution in which the number of draws is equal to number of success state and is equal to  K  . By 
using the explicit expression of the probability mass function of a hypergeometric distribution, we 
have that

 
Z(µ) =

K∑
s=0

(K
s
)(N−K

K−s
)

(N
K
)

(
K2D2 − K2µ2 + s2µ2 − 2DKsµ

K2D2

)−D/2

.
  

(A50)

Notice that the term  s = 0  yields the same moment- generating function (up to a factor) as for a 
fully- connected  Jeff   with Gaussian i.i.d. entries with variance  1/D . In contrast, when  i = j  we obtain

 
Zi=j(µ) =

(
1 − 2µ

D

)−D/2
.
  

(A51)

5.2 Computation of the moments of  νij 
In this section, we assume that  i ̸= j  and use the moment- generating function to compute the 
moments of  νij . The non- central moments of the overlap are easily obtained from the moment- 
generating function as

 
E
J

[
ν

q
ij

]
= dq

dµq Z(µ)|µ=0,
   (A52)

which can be computed in a symbolic manipulation tool.
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We now explicitly compute the first two moments of  νij .

 
E
J

[
νij
]

= d
dµ

Z(µ)|µ=0 = 1
K

E
J

[
|Sij|

]
= K

N
,
  

(A53)

where we used the fact that the mean of  s ∼ Hypergeom(N, K, K)  is given by  E[s] = K2

N  . For the second 
moment, we have

 
E
[
ν2

ij

]
= E

J

[
K2 + |Sij|2(1 + D)

K2D

]
= 1

D
+ D + 1

D

(
(N − K)2

N2(N − 1)
+ K2

N2

)
,
  

while to compute the variance we use the law of total variance

 

Var(νij) = E
s
[Var(νij|s)] + Var(E

[
νij|s

]
)

= 1
D

+ D + 1
K2D

E[s2] − 1
K2 E[s2] + Var

(
1
K

s
)

= 1
D

+ D + 1
D

(
(N − K)2

N2(N − 1)
+ K2

N2

)
− K2

N2

= 1
D

+ D + 1
D




(N − K)2 + (N − 1)K2 − (N − 1)K2 D
D + 1

N2(N − 1)




= 1
D

+ D + 1
D

1
N − 1

+ 1
D

K2 − 2(D + 1)K
N(N − 1)

+ K2

N2(N − 1)
.

  

As  N → ∞  we have that  Var(νij) ∼ 1
D , which is the same variance of the overlap for a fully- 

connected  Jeff   with Gaussian i.i.d. entries. This is expected since when  N   is large, the probability of 
 i  and  j  having common afferents goes to zero.

5.3 Comparison to clustered embedding
Instead of distributed embedding, i.e.  A  being a Gaussian matrix, here we consider a clustered 
embedding by setting

 A = ID ⊗ 1N/D.  (A54)

i.e. the Kronecker product of the  D - dimensional identity matrix and a vector of all ones and length 
 N/D . This means that we can separate the input layer of  N   neurons in  D  non overlapping subsets 

 Bn = { N
D (n − 1) + 1, N

D (n − 1) + 2, . . . , N
D n} , each of size  N/D , and we can write

 

Amn =





1 if m ∈ Bn

0 otherwise
.

  

(A55)

In this case the overlap is given by

 
νij = 1

K

D∑
l=1

∑

m∈Si

∑

n∈Sj

1
[
m ∈ Bl

]
1
[
n ∈ Bl

]
,
  

(A56)

where  1[·]  is the indicator function, i.e. it is one if the argument is true and zero if the argument is false. 
We indicate by  K

i
l  the number of elements of  Si  which belongs to group  l , i.e.  K

i
l =

∑
m∈Si 1[m ∈ Bl] . 

The overlap can then be written as

 
νij = 1

K

D∑
l=1

Ki
lK

j
l.
  

(A57)

The vector  K
i = (Ki

1, . . . , Ki
D)  follows a multivariate hypergeometric distribution with  D  classes, 

 K   draws, a population of size  N  , and number of successes for each class equal to  N/D . Notice that 
 Ki  and  Kj  are independent from each other since each neuron samples its pre- synaptic partners 

independently. We can now compute explicitly the mean of  νij  using the fact that 
 
E
[
Ki

l

]
= K

D 
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E
[
νij
]

= 1
K

D∑
l=1

E
[
Ki

L

]2
= K

D
.
  

(A58)

Similarly, we can write the second moment of  νij  as

 

E
[
ν2

ij

]
= 1

K2




D∑
l=1

E
[
(Ki

l)
2
]2

+
∑
l ̸=l′

E
[
Ki

lK
i
l′
]2

 .

  
(A59)

Once again, we can use known result for variance and covariance of multivariate hypergeometric 
variables to simplify the above expression. Indeed, we can write

 
E
[
(Ki

l)
2
]

= K N − K
N − 1

D − 1
D2 + K2

D2   
(A60)

 
E
[
Ki

lK
i
l′
]

= −K N − K
N − 1

(
1
D

)2
+ K2

D2   
(A61)

from which we obtain the final expression for the second moment

 
E
[
ν2

ij

]
= K2

D2 + 1
D

(
1 − 1

D

)(
N − K
N − 1

)2
.
  (A62)
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