
ARTICLE

Received 12 May 2014 | Accepted 18 Sep 2014 | Published 14 Nov 2014

Formation and maintenance of neuronal
assemblies through synaptic plasticity
Ashok Litwin-Kumar1,2,3 & Brent Doiron2,3

The architecture of cortex is flexible, permitting neuronal networks to store recent sensory

experiences as specific synaptic connectivity patterns. However, it is unclear how these

patterns are maintained in the face of the high spike time variability associated with cortex.

Here we demonstrate, using a large-scale cortical network model, that realistic synaptic

plasticity rules coupled with homeostatic mechanisms lead to the formation of neuronal

assemblies that reflect previously experienced stimuli. Further, reverberation of past evoked

states in spontaneous spiking activity stabilizes, rather than erases, this learned architecture.

Spontaneous and evoked spiking activity contains a signature of learned assembly structures,

leading to testable predictions about the effect of recent sensory experience on spike train

statistics. Our work outlines requirements for synaptic plasticity rules capable of modifying

spontaneous dynamics and shows that this modification is beneficial for stability of learned

network architectures.
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C
ortical neurons undergo complex and variable activity
fluctuations during spontaneous dynamics1–3, but how
this activity relates to functional processing is poorly

understood. Several studies have observed spontaneous
reactivation of evoked activity patterns without stimulus
application4–7. The spiking variability of pairs of neurons due
to shared network architecture increases with the overlap in their
stimulus preferences8–10. Together, these observations suggest
spontaneous dynamics are related to previously experienced
stimuli. This is likely due to synaptic plasticity that reorganizes
networks to reflect past activation patterns11–13. This view is
consistent with studies showing that connections between
similarly tuned visual cortical neurons are more probable14 and
that this specificity emerges after eye opening15.

To address the mechanisms behind these observations, realistic
models of both spontaneous dynamics and plasticity are needed.
Model networks with balanced excitation and inhibition have
addressed the first concern, reproducing the high variability of
spontaneous cortical dynamics16–18. Many prior models of
plasticity in spiking neuronal networks have neglected this
balance, modelling few synapses per neuron19 or normalizing
network firing rates rather than modelling inhibition20.
Conversely, work in balanced attractor circuits has lacked
realistic plasticity mechanisms21,22. This is in part due to the
fact that previous attempts to embed spike timing-dependent
plasticity (STDP) in balanced networks have led to pathological
behaviour23. Recently, detailed STDP models have been
proposed24–26, but studies so far have been restricted to small
or homogeneous networks.

One central difficulty is that spontaneous activity in plastic
networks can destabilize learned network architectures, especially
if spontaneous fluctuations are similar in magnitude to evoked
responses2. Many models do not study this possibility or assume
plasticity is inactivated after learning22,25. Prior theoretical studies
have suggested that reactivation of trained patterns can prevent
degradation of learned architectures27,28, but have not done so in
spiking networks with spontaneous activity. Thus, it is unclear
how the plasticity mechanisms that ensure the stability of learned
network architectures coexist with the fluctuations that define
spontaneous cortical dynamics.

We study balanced networks with realistic STDP25, showing
that stimulus application leads to interconnected neuronal
assemblies. After training, spontaneous dynamics reflect
experienced stimuli, with transient reactivations of previously
trained assemblies. These dynamics depend on maintenance of
the learned connectivity by homeostatic mechanisms29,30.
Furthermore, we show that cortical trial-to-trial variability is
sufficient for spontaneous assembly reactivation, promoting
stability of learned patterns. Our model is the first to
demonstrate stable modification of spontaneous dynamics in
balanced networks through realistic STDP mechanisms. It also
suggests that the interaction between spontaneous dynamics and
STDP plays an important role in memory stability.

Results
Instability of Hebbian STDP without homeostasis. While many
studies have investigated the dynamics of balanced networks with
fixed connection weights, few have investigated the case of plastic
synapses. We simulated a model cortical network of excitatory
and inhibitory neurons, supplemented with plasticity rules that
modified connections onto excitatory neurons (see Methods). The
network was composed of 4,000 adaptive exponential integrate-
and-fire excitatory neurons and 1,000 integrate-and-fire
inhibitory neurons31,32 coupled randomly with a connection
probability of 0.2. Excitatory-to-excitatory synapses were

governed by a voltage-based STDP rule25 (Fig. 1a, top). The
STDP rule captured the dependence of long-term depression and
potentiation on firing rate33 (Fig. 1a, bottom), so that neurons
that exhibited correlated rate fluctuations tended to recruit long-
term potentiation.

We investigated whether external stimuli could modify the
network’s structure and dynamics through STDP. We began with
a network with a homogeneous weight structure. The network
exhibited irregular and asynchronous firing due to a balance
between excitatory and inhibitory currents16,17. Neuronal
assemblies did not form spontaneously, as the uniformly low
firing rates tended to recruit depression (Supplementary Fig. 1).
To investigate how this connectivity could be modified by the
application of external stimuli, we defined a set of 20 stimulus
patterns, which when active corresponded to an increased
excitatory drive to neurons targeted by that pattern. Neurons
were targeted by each pattern with a probability of 0.05.
Consequently, the number of stimuli targeting each neuron was
binomially distributed. Approximately 36% of neurons were not
targeted, 38% were targeted by one stimulus and 26% were
targeted by multiple stimuli. For each stimulus i¼ 1, 2, y, 20, we
refer to those neurons targeted by the stimulus as neuronal
assembly i.

Stimuli were presented sequentially in repeated presentation
blocks. Each stimulus presentation increased the external drive to
targeted neurons by 8 kHz, which may be interpreted as an
increase in the firing rate of 1,000 presynaptic neurons by 8 Hz
each, on average. Stimulus presentations lasted 1 s, with 3-s gaps
between stimuli (see Methods). Stimuli recruited increased firing
rates in subsets of the network (Fig. 1b). However, as has been
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Figure 1 | Pathological activity after training in a network without

homeostasis. (a) STDP curve for different pairing frequencies (top) and

weight change as a function of firing rate assuming both neurons fire as

Poisson processes with the same rate (bottom). (b) Average excitatory

firing rate as a function of time. (c) Excitatory neuron spike rasters before

training and after 200 s of training. After B200 s, the network dynamics

settle into high-frequency oscillations.
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reported in previous studies of balanced networks with
STDP23,34, after a few tens of stimulus applications, the
network firing rate increased abruptly (Fig. 1b) and exhibited
high frequency oscillations (Fig. 1c) that reflected a loss of
stability of the asynchronous balanced state. These dynamics were
due to runaway positive feedback of Hebbian STDP during
training35. Indeed, such instability has precluded the development
of realistic models of stimulus-evoked plasticity in such systems23.
Our study investigates homeostatic mechanisms for synaptic
plasticity34,35, which regulate network activity, preventing this
instability and producing spontaneous dynamics consistent with
experimental data from cortex.

Formation of neuronal assemblies. We implemented a recently
proposed symmetric Hebbian STDP rule that acted on inhibitory
to excitatory synapses30 (Fig. 2a). This inhibitory synaptic
plasticity (iSTDP) controlled the firing rate of excitatory
neurons, as frequently firing neurons recruited more inhibition,
while low-firing rate neurons recruited less inhibition30 We also
normalized the total excitatory conductance onto any
neuron36,37, thus imposing competition between synapses (note
that our results hold for a variety of soft normalization time
scales; Supplementary Fig. 2).

We recorded �Win, the average synaptic strength of connections
in each of the 20 neuronal assemblies. During the training period,
this quantity increased as stimuli were presented, until synapses
between neurons in the same assembly were strongly potentiated
(Fig. 2b,c). Due to the normalization of excitatory conductance,
�Wout decreased slightly on average (Fig. 2b, bottom). Despite this

reorganization, the average excitatory firing rate after training did
not diverge, stabilizing at B1.7 Hz (Supplementary Fig. 3).
Besides modifying synaptic weights, training also changed the
network’s spontaneous dynamics. The clustered excitatory
connectivity led to transient activations of previously stimulated
neuronal assemblies (Fig. 2d,e; Supplementary Movie 1). These
high-firing rate activations occurred over a time scale of hundreds
of milliseconds. However, due to infrequent activations, the time-
averaged firing rates of individual neurons remained low,
consistent with recordings from spontaneous cortex2,3. We
conclude that the network reorganizes its connections in
response to stimulus presentation, and that this reorganization
substantially modifies spontaneous dynamics to reflect prior
stimuli. We refer to these new dynamics as structured
spontaneous activity, in contrast to the uncorrelated activity in
the homogeneously connected network.

Effects of homeostatic inhibitory plasticity. Under the iSTDP
rule, inhibitory synapses were potentiated when the postsynaptic
excitatory neuron fired above a target firing rate and depressed
otherwise (Fig. 2a). As a result, the rule homeostatically regulated
the distribution of excitatory firing rates in the network towards
this target value. We next investigate how this mechanism per-
mits stable formation of assemblies.

A frequently encountered challenge in networks with multiple
stable states is winner-take-all dynamics, in which a single stable
state, typically characterized by a specific subset of neuronal
subpopulations with high firing rates, is dominant18. In such
networks, high-firing rate subpopulations suppress the rest of the
network, preventing other neurons from responding to inputs or
exhibiting strong spontaneous fluctuations. In general, fine-
tuning of parameters is needed to avoid these pathological
states36.

To robustly prevent winner-take-all dynamics, a mechanism by
which high-firing rate neurons are suppressed is necessary. The
iSTDP rule satisfies this requirement. Indeed, after training,

certain assemblies received more inhibition than others (Fig. 3b).
This heterogeneity prevented winner-take-all dynamics during
training. Blocking iSTDP led to less potentiation for stimulated
assemblies (Fig. 3c) and spontaneous activity in which only a
single assembly exhibited high firing rates (Fig. 3d). Thus, we
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Figure 2 | Modification of weights and spontaneous activity by training

in a network with homeostasis. (a) Inhibitory STDP curve for different

pairing frequencies (top) and weight change as a function of firing rate

assuming both neurons fire as Poisson processes with the same rate

(bottom). (b) Average synaptic weight �Win for synapses between neurons

within an assembly (top) and �Wout for synapses between neurons in

different assemblies (bottom). (c) Graph showing connection strength

between neuron pairs for 50 neurons sampled from three assemblies

before (left) and after (right) training. Orange lines correspond to strong

excitatory connections. Neurons in the same assembly are placed nearby

one another. Coloured nodes indicate neurons targeted by stimulus 1. Due

to assembly membership overlap, some of these targeted neurons are also

in the assemblies corresponding to stimuli 2 and 3. (d) Excitatory neuron

spike rasters before and after training. Adjacent rows in the raster

correspond to neurons in the same assembly. Some rows are repeated

since neurons can belong to multiple assemblies. Neurons not belonging to

assemblies are not shown. (e) Average firing rate for neurons in each

assembly, corresponding to the activity in d.
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conclude iSTDP is necessary to prevent winner-take-all dynamics
that would eventually lead to a degradation of connectivity
between suppressed assemblies.

Stability of learned connectivity. We next examined the stability
of the network architecture during structured spontaneous activ-
ity. Many studies have examined how different synaptic dynamics
can affect the stability of learned connectivity in the face of ran-
dom spontaneous firing, employing models that include, for
example, cascades of synaptic states38 or metaplasticity39. We took
a complementary approach, asking whether the modification of
network dynamics after training could be beneficial for the
persistence of the learned architecture compared with the random
firing case. We reasoned that structured spontaneous activity
(Fig. 2d) could consolidate the learned assembly structure, in line
with proposals that link memory stability to reactivation during
sleep or quiet wakefulness40.

We therefore compared the trained recurrent network with a
hypothetical non-recurrent network without structured sponta-
neous activity. Both networks began with the same initial trained
weight matrix and exhibited the same firing rates (see Methods).
However, in the non-recurrent network, synaptic plasticity

modified the weight matrix depending on neurons’ spike times,
but excitatory spikes did not cause excitatory postsynaptic
potentials (EPSPs) in postsynaptic targets (Fig. 4a). Therefore,
excitatory inputs were purely external and uncorrelated, which
prevented coordinated assembly activation. We measured �Win
over a period of spontaneous activity in the two models. In the
non-recurrent network, �Win decayed faster than in the recurrent
network with structured spontaneous activity (Fig. 4b, compare
black and yellow curves), despite the fact that neurons fired at the
same rates in both networks. This suggests that the particular
timing of assembly activation during structured spontaneous
activity prevents degradation of learned network connectivity.

To further probe the effect of structured spontaneous activity,
we perturbed �Win, reducing it by 10% for one assembly, and
analysed the resulting dynamics. After the perturbation, �Win
increased for that assembly, showing that structured spontaneous
activity can retrain a network if its architecture is weakly
disrupted (Fig. 4c, black curve). This was not true for the non-
recurrent network (Fig. 4c, yellow curve). Hence, structured
spontaneous activity both lengthens the time scale over which a
network can retain its learned connectivity and provides an error-
correcting mechanism given disruptions of this connectivity.

We note that this error-correcting mechanism provides a novel
means by which a plastic network may maintain its learned
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architecture. Mechanisms that improve the stability of single
synapses22,38 may complement structured spontaneous activity
in improving stability. However, such mechanisms, on their
own, will not demonstrate recovery after a perturbation (Fig. 4c).
This is because coordinated activation of entire assemblies
during structured spontaneous activity is necessary for this
recovery to occur.

To verify that �Win reached a steady state, we increased the
speed of plasticity and simulated the network for 4,000 s. Indeed,
most assemblies maintained potentiated values (Supplementary
Fig. 4). To verify that the rate of change of individual synaptic
weights decreased during spontaneous activity as the network
remained near a stable equilibrium, we plotted the summed
instantaneous rate of change of weights across the network
(Supplementary Fig. 5). This quantity substantially decreased
after training was complete, suggesting that the fluctuations in the
connectivity matrix were indeed small. Finally, we also verified
that our results were not dependent on the simulation time step41

(Supplementary Fig. 6).
While we have focused mainly on the voltage-based excitatory

STDP rule for clarity of exposition, we also tested our results
using two other realistic plasticity rules: the triplet rule of Pfister
and Gerstner24 and the calcium-based rule of Graupner and

Brunel26. All three rules exhibited a firing rate dependence of
potentiation and depression, with high postsynaptic rates leading
to strong potentiation (Fig. 5a). However, the calcium-based rule
led to synaptic potentiation at sufficiently high presynaptic rates,
even with low postsynaptic rates (Fig. 5a, right). This implies that
activation of assembly j will lead to potentiation of synapses from
j to i in the absence of activation of i. This could potentially lead
to interference between activated assemblies during the training
protocol. Indeed, after training, the triplet and voltage-based rules
behaved similarly, with spontaneous activity improving the
stability of �Win for most but not all assemblies, while the
calcium-based rule behaved differently (Fig. 5b). For the calcium-
based rule, �Win increased for certain assemblies after training,
suggesting that training was unable to fully potentiate synapses
within assemblies. Furthermore, the calcium-based rule led to
winner-take-all behaviour, with only certain assemblies
remaining potentiated after training (Fig. 5b,c, right). These
results suggest that structured spontaneous activity improves
stability for a variety of plasticity rules, but the details depend on
the specific instantiation of the STDP rule. In particular, rules that
potentiate when the presynaptic, but not postsynaptic, neuron
fires at a high rate are likely to exhibit interference between
assemblies during training.
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improves the stability of assemblies in all cases. (c) Structured spontaneous activity after training using the three rules.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms6319 ARTICLE

NATURE COMMUNICATIONS | 5:5319 | DOI: 10.1038/ncomms6319 | www.nature.com/naturecommunications 5

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


Remapping architecture with novel stimuli. We have shown
that a set of stimulus patterns can be embedded in a recurrent
network with STDP. How flexible is this network architecture?
Can assemblies associated with novel stimulus sets be embedded
in the network? We examined this question by defining a
new set of 20 stimulus patterns and repeatedly presenting them to
the network. We then compared �Win for the new stimulus-
defined assemblies and the old assemblies throughout this
protocol.

During this retraining protocol, �Win increased for the new
assemblies and decayed for the old assemblies (Fig. 6a). Fully
potentiating the new set of assemblies required more stimulus
presentations than the original training protocol, indicating that
previously trained stimulus-specific assemblies can interfere with
the formation of new ones. Retraining also shifted spontaneous
activity. Prior to retraining, the original assemblies were activated
during spontaneous activity (Fig. 6b). Afterwards, the new
assemblies were activated (Fig. 6c). Given the stability of the
trained assemblies (Fig. 4) and these results, we conclude that the
network architecture is stable to weak perturbations of its input

statistics, but sufficiently strong changes in its inputs cause the
network to reorganize itself.

Mechanisms of stability and remapping in a reduced model.
The high dimensional and complex dynamics of our spiking
network precluded a mathematically rigorous analysis of the
dynamics of neuronal assemblies. In particular, it was not possible
to formally reduce the dynamics of synaptic weights to a low-
dimensional system whose stable states could be identified. In this
section, we develop a simplified model of interacting neuronal
populations that qualitatively reproduces the dynamics of
assembly formation in the spiking network (see Supplementary
Methods for a full descriptioin of the reduced model). We explore
this model and show three core requirements for stable assembly
structure: a firing rate-dependent plasticity rule, multistability in
the firing rates of different assemblies and homeostasis.

We considered two populations whose firing rates reflect the
number of active neurons in the population at a given time (see
Methods). Populations interacted according to a 2� 2 excitatory
synaptic weight matrix, as well as via global inhibition that was
proportional to the total excitatory activity. We implemented a
plasticity rule with a firing rate dependence similar to that of the
spiking network (Fig. 1a, bottom; see Methods). The change in
the synaptic strength from population j to i was given by
DWijprj � ri(ri� y), where ri is the firing rate of population i and
y is the threshold for potentiation. Strong potentiation therefore
only occurred when both the postsynaptic and presynaptic firing
rates, ri and rj, were large.

When all synaptic weights were equal, both populations
exhibited low levels of activity (Fig. 7a, left). However, when
recurrent excitation within populations 1 and 2 was strong
(W11¼W22¼wmax), the populations exhibited multistability and
transitioned between low and high activity states, similar to the
trained spiking network (Fig. 7a, right). These different dynamics
led to differential recruitment of plasticity. In particular, little
plasticity was recruited when both populations had low rates, but
the within-population weight Wii was strongly potentiated
whenever population i was in a high activity state (Fig. 7a, bottom).

Similar to the spiking model, we assumed that each row of the
2� 2 matrix defining the weights for the two populations
summed to a constant (homeostatic synaptic normalization;
W11þW12¼W22þW21¼wmax). This led to competition
between the synapses onto each population. This feature allowed
us to reduce the four-dimensional dynamics of the weights to a
two-dimensional plane of W11 and W22, the strength of the
synaptic weight within each of the two populations. Further, since
synaptic plasticity occurred on a time scale that is much slower
than the stochastic activity of the population dynamics, we
applied standard mathematical techniques from dynamical
systems theory to derive the phase portrait for the synaptic
weights (Supplementary Methods). Specifically, to determine the
stability of any fixed points of Wij, we computed the vector field
dW11/dt and dW22/dt for each location in the W11 and W22

planes (black arrows in Fig. 7d). When both Wii were not
potentiated, the network had only one stable activity level, and
Wii did not change substantially (Fig. 7a, left and Fig. 7b, bottom
left). But when the Wii were sufficiently large, the system
exhibited structured spontaneous activity and activation of
populations drove the Wii to wmax, their fully potentiated value
(Fig. 7a, right and Fig. 7b, top right). Thus, the model illustrated
that when Wii is potentiated, structured spontaneous activity
appears and causes Wii to approach wmax. This dynamic makes
the assembly structure (W11¼W22¼wmax) stable to small
fluctuations in Wij.

Next, we extended the model to study the effects of remapping.
We defined a four-population model in which each population
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was half the size of the two-population case, so that pairs of
populations could together form assemblies with identical
dynamics to Fig. 7a. When populations 1 and 3 were strongly
connected and populations 2 and 4 were strongly connected, each
pair (1,3) and (2,4) formed an assembly that underwent
correlated fluctuations (Fig. 7c, left). Further, if the connectivity
was changed such that the pairs (1,2) and (3,4) were strongly
connected, the new pairs underwent correlated fluctuations
(Fig. 7c, right).

We examined the dynamics of the synaptic weights in the
subspace spanned by W12 and W34 (see Methods). We found that
both the (1,3) and (2,4) pairing (Fig. 7c, left and Fig. 7d, bottom
left) and the (1,2) and (3,4) pairing (Fig. 7c, right and Fig. 7d, top
right) were stable weight configurations. The model therefore
shows that learned synaptic weight matrices can be stabilized by
structured spontaneous activity, and that there may be multiple
such stable weight matrices. As the number of possible
combinations of subpopulations that can form assemblies
increases, the number of stable weight matrices will grow
exponentially.

In total, our simplified model recapitulated the formation and
remapping of stable assemblies that was the central result from
the spiking model network. Our analysis identified the core
requirements to be rate-dependent plasticity with potentiation
reserved for high pre- and postsynaptic activity, coupled with
bistable firing rate dynamics. Furthermore, the simplicity of the
model suggests that the results of the spiking model did not

critically depend on the exact choice of the spiking model neuron
or synaptic dynamics. We note, however, that the simplified
model is not formally derived from the spiking network, and
therefore does not rigorously establish the stability of the spiking
network.

Spike statistics before and after training. We have investigated
the mechanisms that cause spiking network’s connectivity to
reorganize due to input. Next, we quantify the resulting changes
in spike train statistics. We examined the responses of neurons to
the new set of stimulus patterns (Fig. 6) before and after training
on those patterns. This allowed us to make predictions about
spontaneous and evoked dynamics before and after training.

We first considered evoked firing rates. Consistent with
increased recurrent connectivity, the gain of stimulated neurons
was higher for trained versus untrained inputs (Fig. 8a). In
addition to amplification, structured excitatory connectivity is
often proposed as a mechanism for pattern completion42. To test
whether the network could perform pattern completion, we
presented stimuli that targeted half of the neurons in an assembly.
We then compared firing rates of stimulated and non-stimulated
neurons in targeted assemblies to baseline firing rates. Before
training, stimulated neurons fired at increased rates, but
non-stimulated neurons within a stimulated assembly fired at
baseline levels (Fig. 8b). After training, both stimulated and
non-stimulated neurons had increased firing rates. Hence, the
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model showing the weight dynamics for W12 and W34. The bottom left corresponds to the left side of c, and the top right corresponds to the right side of c.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms6319 ARTICLE

NATURE COMMUNICATIONS | 5:5319 | DOI: 10.1038/ncomms6319 | www.nature.com/naturecommunications 7

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


presence of a stimulus could be read out from neurons that did
not directly receive it through feedforward projections, as long as
they were part of the corresponding assembly.

We also examined trial-to-trial variability of excitatory neurons
in the network. We computed the Fano factor of spike counts in
100-ms windows over repeated stimulus presentations. Stimula-
tion caused a reduction in Fano factor as is frequently observed in
cortex3 (Fig. 8b). This reduction was due to the suppression of

spontaneous fluctuations by the stimulus18,43. The magnitude of
this reduction was greater for trained versus untrained stimuli
(Fig. 8c). This combination of decreased trial-to-trial variability
and increased gain (Fig. 8a) suggests that training improved the
reliability of stimulus representation. To test this, we attempted to
detect the presence of a stimulus using the spike count of single
neurons in 200-ms intervals after stimulus onset. The resulting
receiver-operating characteristic curve was higher after training
(Fig. 8d). Hence, training led to a measurable improvement in
stimulus encoding, even at the single-neuron level.

We also quantified collective activity using the spike count
correlation between neuron pairs measured in 100-ms windows
across trials. On average, correlations during spontaneous
activity were near zero consistent with a balanced asynchronous
state17 (Fig. 9a). However, neuron pairs in the same assembly
had positive average spontaneous spike count correlation after
training (Fig. 9b). This correlation reflected collective fluctuations
due to structured spontaneous activity. Notably, the contribution
of these positive correlations was suppressed when the network
was stimulated, with greater suppression for trained stimuli
(Fig. 9c). We conclude that, after training, networks exhibit
collective spontaneous fluctuations consistent with their
previous inputs. However, when external input is applied, these
fluctuations are suppressed and reliable responses are produced.

Discussion
We have explored how realistic synaptic plasticity rules
combined with homeostatic mechanisms allow stable neuronal
assemblies to form in balanced networks. The presence of these
assemblies leads to spontaneous dynamics that reflect past
stimuli. Previous studies have often neglected the influence of
spontaneous dynamics on the stability of network architec-
tures15,22,25. However, recent work showing large fluctuations in
spontaneous spiking activity, similar in magnitude44 and
temporal patterning2 to evoked states, challenges the validity of
this assumption. We specifically investigated the interaction of
ongoing synaptic plasticity with spontaneous dynamics, showing
that spontaneous fluctuations can consolidate learned assemblies,
rather than dissolving them.

Clearly identifying neuronal assemblies is difficult because
accessing a large fraction of the connections in a local circuit is
experimentally challenging, although some progress has been
made45. Our model, however, makes predictions that can be
tested with single neurons or pairs (Figs 8 and 9). One prediction,
that recurrent connectivity is responsible for a large proportion of
stimulus-tuned excitatory input, is consistent with findings from
visual and auditory cortex that tuned recurrent excitation
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amplifies responses to thalamic input46–48. The fact that these
responses are associated with slow dynamics18 is also consistent
with results from auditory cortex, suggesting that recurrent
excitation prolongs response duration48. Taken together, our
results are consistent with a picture of sensory cortex in which
specific connectivity between functionally related neurons
strongly influences cortical processing49.

Experimental studies have demonstrated that spike train
statistics can be modified by training or stimulus application. In
our model, the formation of neuronal assemblies led to an
increase in gain and reduction in trial-to-trial variability.
Consistent with this, repeated presentation of an auditory
stimulus increases gain and reduces variability of evoked
membrane responses in auditory cortex13. An increase in firing
rate and decrease in variability in neurons in prefrontal cortex
was also found after training on a working-memory task50.

Our network also makes predictions about spike train co-
variability. Structured spontaneous activity leads to increased
correlations for neurons with similar stimulus preference, as is
commonly reported8,9. Further, because connectivity is related to
stimulus preference in our network, this implies that neurons that
share strong connections have higher correlations (Fig. 9b). This
is consistent with findings from visual cortex showing noise
correlations are higher for connected pairs14.

While assembly dynamics have been studied previously, our
model is the first to include balance, realistic STDP and stability
of learned architecture after training. Amit and Brunel21 did not
explicitly model potentiation, instead assuming within-assembly
synapses were selectively potentiated and then studying the
resulting dynamics. Mongillo et al.22 implemented plasticity, but
assembly stability was due to bistability in synaptic weights owing
to cellular mechanisms, as opposed to the network mechanisms
presented in our work. Morrison et al.23 implemented STDP
without homeostatic mechanisms, and found that network
dynamics were unstable. Further, none of these attractor studies
examined the dynamics of networks with rich spontaneous
dynamics including assembly reactivation. We show that, in fact,
spontaneous dynamics can improve the stability of learned
architectures (Fig. 4), a feature lacking in models that obtain
stability through synaptic mechanisms22,38. Izhikevich et al.19

considered large, but non-balanced networks with extremely low
(0.1%) connection probability, finding that neuronal assemblies
randomly formed, but only persisted transiently. Finally, Brea
et al.51 examined learning in networks of Poisson neurons,
showing that sequences could be learned with a specific learning
rule that is similar to those studied in our manuscript. However,
noisy sequences led to degradation of connectivity during
spontaneous dynamics, as the stability mechanisms discussed in
our study (Fig. 4) were not present.

Prior literature has proposed that reactivation of hippocampal
neuronal ensembles is crucial for memory consolidation40.
Computational models have argued that such reactivation can
be beneficial for memory stability27,28. In these studies,
connectivity perturbations were due to the formation of new
associative memories. In contrast, we consider stability in the face
of ongoing cortical spontaneous activity, which has proven
difficult for stable models of cortical plasticity23,34,35. In both
cases, reactivation is beneficial for memory stability. Our results
suggest that, even in the absence of new learned associations,
reactivation may prevent random firing from degrading learned
connectivity. Further, cortical trial-to-trial variability permits
reactivation without hippocampal input.

Memory systems must contend with the ‘stability–plasticity
dilemma,’ the fact that improving the stability of existing
associations leads to difficulty in learning new associations. This
is clearly visible in our model, as small perturbations of

connectivity died out (Fig. 4c) while larger ones led to
reorganization (Fig. 6). Further work is necessary to determine
what mechanisms precisely determine the region of stability for a
given connectivity. Possible mechanisms that may promote
plasticity for relevant inputs include neuromodulators that
manipulate synaptic plasticity and signal for novelty52 or
feedforward iSTDP that biases responses towards novel stimuli30.

We have shown that homeostatic regulation of firing rates in
the form of iSTDP is crucial for robust training of the network
(Fig. 3). We do not claim that this particular form of plasticity is
necessary, but rather that regulation of the average firing rate is
likely important for maintaining stable activity patterns. Firing
rate-modulated scaling of total excitatory input weight, for
example, could accomplish similar effects. Indeed, miniature
excitatory postsynaptic current sizes and firing rates increase
following sensory deprivation that initially decreases visual cortex
activity53. Previous theoretical studies have shown that
homeosynaptic scaling can be beneficial for heterogeneous
working-memory circuits, similar to how iSTDP prevents
winner-take-all dynamics36 (Fig. 3).

Our network also relied on heterosynaptic competition, which
maintained a neuron’s total excitatory synaptic input, and bounds
on synaptic strength. Heterosynaptic competition has been
studied experimentally and in model networks29,37,54. In a
previous computational model, normalization of both
presynaptic and postsynaptic weights along with a simple STDP
rule led to the spontaneous development of feedforward chains37.
Our model, in contrast, includes a dependence of STDP on firing
rate and fewer constraints on synaptic weights, leading to
qualitatively different dynamics. Bounds on synaptic strength
were also necessary to curb the instrinsic instability of excitatory
STDP. Without them, strong stimuli could cause assemblies’
recurrent weights to increase without limit, or, conversely, parts
of the network to become completely disconnected. Such
pathological behaviour has been observed in previous models of
balanced excitatory–inhibitory networks with STDP that lacked
the homeostatic mechanisms in our study23.

Previous studies have investigated whether STDP is capable of
embedding trajectories in neural activity space into recurrent
networks55,56. In these studies, STDP that depended only on
spike timing was combined with homeostatic rules to produce
networks that respond to inputs with stereotyped trajectories.
These networks tend to produce effectively feedforward
connectivity matrices37,56, in contrast to the the overlapping
assemblies of our study. Such assemblies, along with the
concordant increase in the likelihood of strong reciprocal
coupling between pyramidal neurons, are observed in
experimental data45,57. This difference is likely due to our
incorporation of firing rate-dependent STDP, which allows for
the formation of Hebbian assemblies. We also explicitly
investigated the persistence of the learned connectivity during
spontaneous activity, a feature that is lacking in these studies.
Future work should reconcile these prior investigations with
firing rate-dependent STDP and rich spontaneous activity.

We made several assumptions on plasticity in our network. For
simplicity and due to lack of experimental studies, we did not
model plasticity of synapses onto inhibitory neurons. We also
assumed feedforward inputs to neurons were fixed during
training. In development, thalamic input specificity occurs before
recurrent specificity is established15, supporting this assumption.
In our network, training causes a shift from responses being
driven in a purely feedforward manner to one in which recurrent
excitation is dominant (Fig. 8a). This is reminiscent of predictive
coding theories, in which higher regions predict the activity in
lower regions and feedforward connections serve primarily to
transmit errors in this prediction58. We expect that plasticity of
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feedforward projections would also support this type of
computation, with feedforward inhibitory plasticity suppressing
the transmission of redundant stimuli.

Our synaptic time constants were faster than those estimated
from experiments to reduce simulation time25. The time scale
separation argument in our reduced model (see Methods)
suggests that our results will hold for slower weight changes, as
does the fact that different learning speeds led to similar results
(Supplementary Fig. 4). The primary requirement for stable
learning is that homeostatic mechanisms must be sufficiently fast
relative to the excitatory STDP to prevent runaway dynamics in
the latter. In the limit of very slow inhibitory STDP, the network
will be unable to solve the problem of winner-take-all dynamics
(Fig. 3). This result is consistent with a recent study that showed
fast homeostatic mechanisms are necessary to stabilize excitatory
STDP in recurrent networks34.

A critical aspect of our model was the dependence of
potentiation and depression on the firing rate of the postsynaptic
neuron (Fig. 1a, bottom). Such dependence has been shown
experimentally and is a feature of multiple biophysically
motivated STDP rules24–26,33, all of which reproduced the
results of this study (Fig. 5). Unlike previous studies in which
spike timing was the only determinant of synaptic changes, firing
rate, not spike timing, was the most important quantity in our
network. Indeed, our reduced model captured many features of
the spiking network using plasticity similar to rate-based
Bienenstock-Cooper-Munro rules59, and all three STDP rules
had qualitatively similar rate dependences. However, while we
have shown that neuronal assemblies constitute stable
configurations of the synaptic weights for our system, we have
not shown that they are the only ones. Other structures, such as
feedforward chains, may also be stabilized by STDP. Relating
biophysically motivated plasticity rules to the stable weight
configurations they can support remains an open area of inquiry.

Methods
Membrane potential dynamics. The model network consisted of NE excitatory
(E) and NI inhibitory (I) neurons. Throughout, we will denote population (E or I)
with superscripts and neuron index (1 through NE/I) by subscripts. The equation
for the voltage dynamics of neuron i in population X was:

d
dt

VX
i tð Þ ¼ 1

tX
EX

L �VX
i tð ÞþDX

T exp
VX

i tð Þ�VX
T;i tð Þ

DX
T

� �� �

þ gX E
i tð Þ

C
EE �VX

i tð Þ
� �

þ gX I
i tð Þ

C
EI �VX

i tð Þ
� �

� wX
i tð Þ
C

:

ð1Þ

Parameter values are summarized in Table 1. Dynamics are consistent with
Clopath et al.25 Excitatory units were modelled as exponential integrate-and-fire
neurons with an adaptation current and adaptive threshold31,32. Inhibitory
units were modelled as simple non-adapting integrate-and-fire neurons
DI

T ;w
I
i tð Þ ! 0

� �
. The dynamics of the neuronal threshold for excitatory neurons,

VE
T;i , were given by:

d
dt

VE
T;i tð Þ ¼ 1

tT
VT �VE

T;i tð Þ
� �

: ð2Þ

When neuron i spiked due to its voltage diverging (in simulation, determined by
voltage exceeding 20 mV), its potential was reset to Vre and clamped for an absolute
refractory period of tabs. If it was excitatory, its threshold VE

T;i was set to VTþAT.
For inhibitory neurons, VI

T;i ¼ VT at all times. We denote the spike train of neuron
i in population X as sX

i ðtÞ ¼
Pn

k¼1 dðt� tX
i;kÞ, where tX

i;1 . . . tX
i;n are the times when

the neuron spiked and d is the Dirac delta function.
The adaptation current for excitatory neuron i, wE

i , was given by:

d
dt

wE
i tð Þ ¼ 1

tw
aw VE

i tð Þ�EE
L

� �
�wE

i tð Þ
� �

: ð3Þ

When excitatory neuron i spiked, wE
i was increased by bw.

Dynamics of synaptic conductances. Connections occurred with probability p,
and the strength of a connection from neuron j in population Y to neuron i in
population X was denoted JXY

ij . If a connection did not exist, JXY
ij ¼ 0. Recurrent

excitatory connection weights were bounded by JEE
min and JEE

max, while weights from
inhibitory to excitatory neurons were bounded by JEI

min and JEI
max. JIE and JII were

fixed and constant for all connected i, j.
The total excitatory or inhibitory conductance of neuron i in population X was

given by:

gXY
i tð Þ ¼ FY tð Þ� JXY

ext sXY
i;ext tð Þþ

X
j

JXY
ij sY

j tð Þ
 !

; ð4Þ

where Y A (E, I), FY (t) is the synaptic kernel for input from population Y, and �
denotes convolution. Synaptic kernels were given by a difference of exponentials:

FY tð Þ ¼ 1
tY

d � tY
r

e� t=tY
d � e� t=tY

r

� �
for t positive. In addition to recurrent input,

neurons also received external excitatory input in the form of a spike train sX E
i;ext tð Þ,

which was an independent homogeneous Poisson process for each neuron with
rate rXE

ext . This input may be interpreted as the sum of 1,000 independent excitatory
presynaptic neurons, each with a firing rate rXE

ext=1; 000. For external excitatory
input, the synaptic strength was set to the minimim recurrent synaptic strength

JXE
ext ¼ JXE

min

� �
. Neurons did not receive external inhibitory input sXI

i;ext ¼ 0
� �

.

Parameters were chosen such that a fully potentiated excitatory or inhibitory
synapse onto an excitatory neuron caused a postsynaptic potential of B2.5 mV if
all other inputs were blocked. Synapses were implemented with a delay between 0
and 1.5 ms using the techniques of Mattia and Giudice60 with a resolution of
0.1 ms. Parameter values can be found in Table 2.

Excitatory synaptic plasticity. We implemented a voltage-based STDP rule25 that
modified JEE

ij within the bounded range JEE
min; JEE

max

� �
. Furthermore, we imposed a

homeostatic normalization of the total excitatory synaptic weights that a neuron
received by scaling each row of JEE

ij every 20 ms to maintain a constant row
sum36,37. This was accomplished by subtracting a constant amount from each

Table 1 | Parameters for neuronal membrane dynamics.

Symbol Description Value

tE E neuron resting membrane time constant 20 ms
tI I neuron resting membrane time constant 20 ms
EE

L E neuron resting potential � 70 mV
EI

L I neuron resting potential � 62 mV
DE

T E neuron EIF slope factor 2 mV
C Capacitance 300 pF
EE E reversal potential 0 mV
EI I reversal potential � 75 mV
VT Threshold potential � 52 mV
AT Post spike threshold potential increase 10 mV
tT Adaptive threshold time scale 30 ms
Vre Reset potential �60 mV
tabs Absolute refractory period 1 ms
aw Subthreshold adaptation 4 nS
bw Spike-triggered adaptation 0.805 pA
tw Spike-triggered adaptation time scale 150 ms

Table 2 | Parameters for recurrent coupling.

Symbol Description Value

NE Number of E neurons 4,000
NI Number of I neurons 1,000
p Connection probability 0.2
tE

r Rise time for E synapses 1 ms
tE

d Decay time for E synapses 6 ms
tI

r Rise time for I synapses 0.5 ms
tI

d Decay time for I synapses 2 ms
rEE

ext Rate of external input to E neurons 4.5 kHz
rIE

ext Rate of external input to I neurons 2.25 kHz
JEE

min Minimum E to E synaptic weight 1.78 pF
JEE

max Maximum E to E synaptic weight 21.4 pF
JEE

0 Initial E to E synaptic weight 2.76 pF
JEI

min Minimum I to E synaptic weight 48.7 pF
JEI

max Maximum I to E synaptic weight 243 pF
JEI

0 Initial I to E synaptic weight 48.7 pF
JIE Synaptic weight from E to I 1.27 pF
JII Synaptic weight from I to I 16.2 pF
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nonzero entry in the row: JEE
ij ðtÞ’JEE

ij ðtÞ� ðð
P

j
JEE

ij tð Þ� JEE
ij 0ð ÞÞ=NE

i Þ, where NE
i is

the number of nonzero entries.
The dynamics of the synapse from excitatory neuron j to excitatory neuron i

were given by:

d
dt

JEE
ij ðtÞ ¼�ALTDsE

j ðtÞR uE
i ðtÞ� yLTD

� �
þALTPxE

j ðtÞR VE
i ðtÞ� yLTP

� �
R uE

i ðtÞ� yLTD
� �

;
ð5Þ

where R is a linear-rectifying function (R(x)¼ 0 if xo0, R(x)¼ x otherwise), uE
i

and uE
i represent the membrane voltage VE

i low-pass filtered with time constants tu

and tu, respectively, and xE
j represents the spike train sE

j low-pass filtered with time
constant tx. Parameter values can be found in Table 3.

Inhibitory synaptic plasticity. We implemented an inhibitory STDP rule30 that
modified JEI

ij within the bounded range JEI
min; J

EI
max

� �
. Weight changes depended on

yX
i , which represents the spike train sX

i low-pass filtered with time constant ty.
Upon a spike from either the presynaptic or postsynaptic neuron, the weight was
modified according to the following:

JEI
ij ’JEI

ij þ Z yE
i ðtÞ� 2r0ty

� �
if the presynaptic inhibitory neuron fired;

JEI
ij ’JEI

ij þ ZyI
j ðtÞ if the postsynaptic excitatory neuron fired:

ð6Þ

The rate r0 represents the target firing rate to which the inhibitory plasticity
attempts to balance the postsynaptic neuron. During unstimulated conditions,
neurons fired on average less frequently than their target rate due to synaptic
bounds (mean of 1.7 Hz rather than 3 Hz; Supplementary Fig. 3), allowing the
system to exhibit a distribution of firing rates because of the variability in the
connectivity matrix. Parameter values can be found in Table 4.

Stimulation protocols. For training (Fig. 2), each stimulus i¼ 1y20 was acti-
vated sequentially for a period of 1 s, with 3-s gaps in between stimulus pre-
sentations. This was repeated until each stimulus had been repeated 20 times. For
retraining (Fig. 6), each stimulus was presented 80 times. During training, stimuli
increased rX E

ext by 8 kHz. These simulations began with a 10-s period without STDP
to allow transients to die out. To probe the dependence of Fano factor and cor-
relation before and after training (Figs 8 and 9), we used a weaker stimulus, with a
duration of 500 ms and an increase in rX E

ext of 2 kHz. These simulations were
repeated 50 times for each of the 10 stimuli to assess trial-to-trial variability. We
disabled STDP for these short protocols.

For the non-recurrent network (Fig. 4a,b), we chose the inhibitory STDP target
firing rate for each neuron to be equal to its spontaneous firing rate in the trained
system and removed synaptic bounds for inhibitory STDP. We also increased rEE

ext
by 4 kHz and rI E

ext by 2 kHz to compensate for the loss of recurrent excitation. We
then allowed the system to run for 200 s for firing rates to reach their target values
before activating excitatory STDP. This allowed for a matched firing rate
comparison between the two networks.

Simulations were performed using code written in Python, Cþ þ and Julia
implementing Euler integration with a time step of 0.1 ms. Code implementing the

model written in Julia is available at http://www.ugcs.caltech.edu/~alk/code/
alk_formation_2014.zip.

Other plasticity rules. For the triplet-based rule (Fig. 5, left), the following
parameters were used (following the notation of Pfister and Gerstner24):
tþ ¼ 16.8 ms, t_¼ 33.7 ms, tx¼ 101 ms, ty¼ 125 ms, Aþ2 ¼ 7:5�10� 10,
Aþ3 ¼ 9:3�10� 3, A�2 ¼ 7�10� 3, A�3 ¼ 2:3�10� 4. For the calcium-based rule
(Fig. 5, right), the following parameters were used (following the notation of
Graupner and Brunel26): gp¼ 7.25, gd¼ 3.31, yp¼ 1.3, yd¼ 1, tCa¼ 22.7 ms,
Cpre¼ 0.56, Cpost¼ 1.24.

Reduced model. Our reduced model (Fig. 7) consisted of neuronal populations
defined similarly to Bressloff61. Briefly, the activity of population i was given by ni,
which represented the number of neurons in an ‘active’ state. Transitions from a
state of ni active neurons to ni±1 active neurons occurred with rates T �i ðniÞ,
making ni a birth–death process. The transition rates were given by T �i ¼ ni and
T þi ¼ Nfiðn=NÞ, where n is the vector of active neurons for each population. Here
N is an abstract system-size parameter; we note that it is not equal to the maximum
of ni, which can exceed N. We therefore define x¼n/N, which can have entries
greater than 1. As N-N, the dynamics of x reduce to the Wilson–Cowan
equations: d

dt xi ¼ � xi þ fiðxÞ61. The activation function was given by:

fiðxÞ ¼
1
4
þ 2

1þ exp � 4�
P

j
ðWij �winh

 !
xj � 0:8Þ

 ! : ð7Þ

For sufficiently large Wii, this nonlinear activation function yields bistability in the
corresponding Wilson–Cowan system as N-N (Fig. 7a, right). The excitatory
weight matrix Wij was constrained to have a constant row sum,

P
i

Wij ¼ 1, in the
same manner as the spiking simulations. Entries in Wij were bounded by 0 and
wmax and evolved according to

d
dt

Wij ¼ Zxj � xiðxi� yÞ; ð8Þ

where Z¼ 0.001 is the learning rate and y¼ 1.8 is the potentiation threshold.
For the two-population model, wmax¼ 1, winh¼ 0.2 and N¼ 16. For the four-
population model, wmax¼ 1/2, winh¼ 0.1 and N¼ 8 so that pairs of populations
could form a single population identical to the two-population case.

Bressloff61 presented techniques to analyse the rate of transitions for a single
population xi from a low activity state xi¼ xL to a high activity state xi¼ xH

separated by a saddle point x0. Defining O� xið Þ ¼ T �i nið Þ=N and

SðxÞ ¼
R

ln O� ðyÞ
OxðyÞdy, the rate of transitions from a state xL/H is given by:

rL=H ¼
Oþ xL=H

� �
2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S00 x0ð Þj jS00 xL=H

� �q
exp �N S x0ð Þ� S xL=H

� �	 
� �
: ð9Þ

We extended this framework to the case of multiple populations to compute the
vector field of Fig. 7b. Given a Wij, we first numerically calculated the solutions {x�}
to the deterministic Wilson–Cowan equations and determined which were stable.
We then calculated transition rates between stable solutions using equation (9) by
assuming only one population i transitioned at a time and other populations’
activities remained fixed during the transition, xj ¼ x�j , and then afterwards settled
to their new local equilibrium values. These transition rates yielded a Markov
process over metastable states of the system with equilibrium density P(x�).
Assuming Z was small so a time scale separation could be performed, the expected
change in Wij was calculated as:

_Wij
� �

¼
X
fx�g

P x�ð ÞZx�j � x�i x�i � 1:8
� �

: ð10Þ

The vector field of Fig. 7d was numerically estimated. Simulations of the reduced
system were done using the Gillespie algorithm. Further details are given in
Supplementary Methods.
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