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Litwin-Kumar A, Rosenbaum R, Doiron B. Inhibitory stabiliza-
tion and visual coding in cortical circuits with multiple interneuron
subtypes. J Neurophysiol 115: 1399–1409, 2016. First published
January 6, 2016; doi:10.1152/jn.00732.2015.—Recent anatomical and
functional characterization of cortical inhibitory interneurons has
highlighted the diverse computations supported by different subtypes
of interneurons. However, most theoretical models of cortex do not
feature multiple classes of interneurons and rather assume a single
homogeneous population. We study the dynamics of recurrent excit-
atory-inhibitory model cortical networks with parvalbumin (PV)-,
somatostatin (SOM)-, and vasointestinal peptide-expressing (VIP)
interneurons, with connectivity properties motivated by experimental
recordings from mouse primary visual cortex. Our theory describes
conditions under which the activity of such networks is stable and
how perturbations of distinct neuronal subtypes recruit changes in
activity through recurrent synaptic projections. We apply these con-
clusions to study the roles of each interneuron subtype in disinhibi-
tion, surround suppression, and subtractive or divisive modulation of
orientation tuning curves. Our calculations and simulations determine
the architectural and stimulus tuning conditions under which cortical
activity consistent with experiment is possible. They also lead to novel
predictions concerning connectivity and network dynamics that can be
tested via optogenetic manipulations. Our work demonstrates that
recurrent inhibitory dynamics must be taken into account to fully
understand many properties of cortical dynamics observed in exper-
iments.

inhibition; V1; modeling

THE ROLE OF INHIBITORY NEURONS in visual processing has been
extensively studied, playing a role in, for example, orientation
selectivity (Shapley et al. 2003), surround suppression (Ozeki
et al. 2009), and expansion of dynamic range (Liu et al. 2011).
Mechanistic computational models of visual processing have
also frequently incorporated an inhibitory neuronal subpopu-
lation (Somers et al. 1995; Ben-Yishai et al. 1995; Ozeki et al.
2009; Hansel and van Vreeswijk 2012). Few models have
incorporated different subtypes of interneuron (Wang et al.
2004; Vierling-Claassen et al. 2010), with most studies assum-
ing that inhibitory neurons can be grouped into a single
population with homogeneous functional and anatomical prop-
erties (Vogels et al. 2005).

However, recent work in mouse V1 has revealed substantial
heterogeneity in the connectivity, function, and dynamics of
different inhibitory neuron subtypes. In mouse cortex, three

major interneuron subtypes, parvalbumin-expressing (PV), so-
matostatin-expressing (SOM), and vasointestinal peptide-ex-
pressing (VIP) neurons comprise 80–90% of inhibitory neu-
rons (Markram et al. 2004; Rudy et al. 2011). Connectivity
between these subtypes follows stereotyped rules: for example,
SOM neurons are strongly inhibited only by VIP neurons and
VIP neurons strongly inhibit only SOM neurons (Pfeffer et al.
2013). Furthermore, these neurons perform distinct computa-
tional roles: in layer 2/3, VIP neurons disinhibit the excitatory
pyramidal neuron (E) population during locomotion via sup-
pression of SOM neurons (Fu et al. 2014), while activation of
PV or SOM neurons divides or subtracts, respectively, E
neuron responses to oriented bars (Wilson et al. 2012; Atallah
et al. 2012).

Given these observations, mechanistic models of visual
processing must be extended to include heterogeneous in-
terneuron subtypes. The need for consistent models is espe-
cially important given ongoing debates on the role of recurrent
V1 inhibitory circuitry in visual processing in mouse. It has
been argued that a critical role of inhibition is to stabilize the
intrinsically unstable dynamics of recurrent excitation (Murphy
and Miller 2009), consistent with the dynamics of surround
suppression in cat V1 (Ozeki et al. 2009) and a recent model of
orientation selectivity in mouse V1 (Hansel and van Vreeswijk
2012). However, experimental reports suggest that recurrent
excitation is weak in layer 2/3 of mouse V1 (Atallah et al.
2012), questioning the need for inhibition to stabilize cortical
dynamics. The mechanism of surround suppression in this
region is also debated (Ozeki et al. 2009; Adesnik et al. 2012),
with the contributions of SOM and PV interneurons remaining
unclear (Adesnik et al. 2012; Ayaz et al. 2013). Finally, the
effects of activation of different subtypes of inhibitory in-
terneuron on excitatory neuron tuning curves have also been
the subject of recent discussion (Wilson et al. 2012; Atallah et
al. 2012; Lee et al. 2012; Seybold et al. 2015). So far, a
consistent theoretical framework in which to investigate the
circuit mechanisms underlying these observations has been
lacking.

We study the impact of heterogeneous inhibitory subpopu-
lations using a recurrent network model of mouse V1 with
connectivity constrained by previous experimental observa-
tions (Pfeffer et al. 2013). Our analysis generalizes the notion
of inhibition stabilized networks (Tsodyks et al. 1997; Ozeki et
al. 2009) to architectures with multiple, distinct inhibitory
subpopulations. Using this framework, we first investigate the
dynamics of surround suppression (Adesnik et al. 2012) and
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disinhibition (Fu et al. 2014) based on recent experimental
observations. Next, we evaluate different hypotheses concern-
ing the mechanisms of the subtractive and divisive shifts
observed experimentally during optogenetic activation of SOM
and PV neurons (Wilson et al. 2012; Atallah et al. 2012; Lee et
al. 2012; Seybold et al. 2015) and propose a testable model for
how these shifts can occur. Given that many features of
interneuron organization and function in V1 are conserved in
other cortical areas (Avermann et al. 2012; Hamilton et al.
2013; Kvitsiani et al. 2013; Pi et al. 2013), many of our results
may be applicable to neural circuit dynamics beyond mouse
visual cortex.

MATERIALS AND METHODS

Paradoxical effects of inhibitory neuron modulation. We consider
a firing rate network with M populations obeying the Wilson-Cowan
equations (Wilson and Cowan 1972):

�A

drA

dt
� �rA � fA��A � �

B
JABrB� , (1)

where rA denotes the average firing rate of neurons in population A �
1 � � � M, JAB is the connection strength from population B to A, �A

is the bias current to population A, �A is its time constant, and fA(u) is
its firing rate response function to an input current u. We assume that
the network has some equilibrium r0 � (r1 � � � rM)T, near which the
dynamics of Eq. 1 can be approximated by the linear system:

T
d�r

dt
� (W � I)�r � b (2)

Here �r � r � r0 and T is a diagonal matrix whose Ath diagonal
element is �A. Letting GA � fA|ro

' represent the gain of population A at
equilibrium, WAB � GAJAB represents the effective interaction from
population B to A, and bA � GA��A represents the effect of a
perturbation to the bias current �A. We note that this effective
interaction depends both on the transfer of presynaptic firing rate to
synaptic current and synaptic current to postsynaptic firing rate,
evaluated at equilibrium. Thus WAB will be reduced or increased by,
for example, synaptic depression and facilitation, respectively.

Suppose that population 1 is excitatory and 2 � � � M are inhibi-
tory. Consider a small perturbation b � (0, b2, b3, � � � , bM)T that
does not target the excitatory population. The steady-state change in
firing rates �s � limt¡��r is obtained by setting Eq. 2 to zero: (I �
W)�s � b. Letting e1 � (1, 0, 0, � � � , 0)T, we therefore have e1

T

(I � W)�s � e1
Tb � 0. Hence,

0 � e1
T(I � W)�s � �

B�1

M

(I � W)1B�sB (3)

)(1 � W11)�s1 � �
B�2

M

W1B�sB � G1��
B�2

M

J1B�sB� (4)

Note that the sign of 1 � W11 determines the stability of the excitatory
subnetwork: it is stable when W11 � 1 [noninhibition-stabilized
network (non-ISN) regime] and unstable when W11 � 1 (ISN regime)
(Murphy and Miller 2009). Also note that �B � 2

M W1B�sB represents
the summed change in inhibitory current onto the excitatory popula-
tion due to the perturbation. As long as the gain GB is positive, we
have the following two cases:

1) If the excitatory subnetwork is stable (non-ISN), then the sign of
the change in the firing rate of the excitatory population and of the
change in the total inhibitory current are opposite.

2) If the excitatory subnetwork is unstable (ISN), then the sign of
the change in the firing rate of the excitatory population and the sign
of the change in the total inhibitory current are the same.

Modulation of inhibitory subpopulations. We consider the dynam-
ics of the linearized system in Eq. 2 with �r � (rE, rP, rS, rV)T

representing the changes in the excitatory (E), PV (P), SOM (S), and
VIP (V) populations. The coupling matrix is given by:

W ��
WEE �WEP �WES 0

WPE �WPP �WPS 0

WSE 0 0 �WSV

WVE �WVP �WVS 0
� (5)

The steady-state change in firing rates is given by �s � (I � W)�1b.
We consider a modulation that targets VIP neurons: b � (0, 0, 0,�)T.
In this case:

�
�sE

�sP

�sS

�sV

� �
�WSV

det(I � W) �
WES(1 � WPP) � WEPWPS

WPS(1 � WEE) � WESWPE

�(1 � WPP) (1 � WEE) � WEPWPE

g(W)
�

(6)

Note that det(I � W) � 0 if the system described by Eq. 2 is stable.
We do not explicitly write the expression for �sV due to its length.

Linear firing rate model. For the linear firing rate model of mouse
V1,

W ��
WEE �1 �1 0

1 �1 �0.5 0

1 0 0 �0.25

1 0 �0.6 0
� (7)

WEE was set to either 0.8 (non-ISN) or 1.2 (ISN). Firing rates evolved
according to Eq. 2, with �A � 20 ms. The firing rates were given by
r � r0��r, where r0 � (4, 9, 5, 3)T Hz. The modulation was given
by b � (0, 0, 0, 5)T

For the spatial model of surround suppression, firing rates de-
pended on the spatial position x:

T
d�r�x�

dt
� 	 (K(x � y) � I)�r�y�dy � b�x� (8)

.

�r(x) was discretized into 200 points with x � (�10, 10). The
coupling matrix K(x � y) was given by KAB(x � y) �

WABe�|x�y|2⁄	AB
2

⁄ Z, where the normalization constant Z ensured the
integral of KAB equaled WAB. For all connections except the excitatory
to SOM neuron connections, 	AB ¡ 0 (only local connectivity).
Otherwise, 	SE � 1. The input bA(x) was equal to aAe�x2

/
2, with
aE � 5, aP � 5/2, and aS � aV � 0. 
 Ranged from 1 to 3.

Spiking neuron dynamics. The voltage of neuron i in population A,
Vi

A, was modeled as an adaptive exponential integrate- and-fire neuron
(Brette and Gerstner 2005):

Cm
A dVi

A

dt
� Ii

A � wi
A(t) � gL

A�Vi
A(t) � EL� � gL

A�T
Ae�Vi

A(t)�VT,i
A �⁄�T

A

� � .
B

gi,syn
AB �t��Vi

A�t� � Esyn
B �. (9)

Parameters were chosen based on reported electrophysiological mea-
surements from mouse V1 and S1 where V1 data could not be found.
Where available, the reference used to determine the relevant param-
eter is included. The membrane capacitance was Cm � 180 pF for E
neurons and Cm � 80 pF for I neurons (Zhou and Roper 2011). All
neurons had a rest voltage of EL � �60 mV (Gentet et al. 2010).
gL � 6.25 nS for E neurons and 5 nS for I neurons (Avermann et al.
2012). The reversal potential Esyn was 0 mV for excitatory synapses
and �67 mV for inhibitory synapses (Pfeffer et al. 2013). The
exponential integrate-and-fire slope parameter �T was 0.25 mV for
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PV neurons and 1 mV otherwise (Brette and Gerstner 2005). The
threshold voltage VT,i was chosen from a Gaussian distribution, with
a mean of �40 mV for E and PV neurons and �45 mV for SOM and
VIP neurons, and a standard deviation of 3 mV (Avermann et al.
2012; Gentet et al. 2010; Zhou and Roper 2011).

When Vi
A diverged, the neuron spiked and the voltage was reset to

Vre � �60 mV (Gentet et al. 2010) for an absolute refractory period
of 2 ms. The adaptation current followed:

�w

dwi
A

dt
� a�Vi

A(t) � EL� � wi
A(t), (10)

with a � 4 nS and �w � 150 ms (Brette and Gerstner 2005). For PV
neurons, the adaptation current was set to zero consistent with the
weak adaptation of these neurons (Pfeffer et al. 2013). wi

A was
incremented by an amount b � 8 pA whenever the corresponding
neuron spiked (Brette and Gerstner 2005).

The conductance due to input from population B was given by:

gi,syn
AB (t) � �

j
Jij

ABFB(t) * yj
B(t), (11)

where * denotes convolution. The synaptic kernel was given by a

difference of exponentials: FB�t� � �e�t⁄�d
B�e�t⁄�r

B�� ��d
B � �r

B�. Rise
times were 0.5 ms for synapses from E and PV and 1 ms for SOM and
VIP neurons. Decay times were 2 ms for synapses from E neurons, 3
ms for PV neurons, and 4 ms for SOM and VIP neurons. yj

B(t) �

�k Fj
B(t)Dj

B(t)�(t � tj,k
B ) represented the instantaneous neurotransmit-

ter release of neuron j in population B and followed a standard
Tsodyks-Markram model of short-term synaptic plasticity (Tsodyks
and Markram 1997) with facilitation F and depression D. E ¢ E and
PV ¢ E exhibited depression with UD � 0.75, and all connections
from PV neurons exhibited depression with UD � 0.9. The depression
time constant was 800 ms. Only SOM E connections exhibited
facilitation, with UF � 0.5, Fmax � 2, and a time constant of 200 ms.
These parameters were chosen to produce short-term synaptic plas-
ticity dynamics consistent with reported measurements (Ma et al.
2012; Reyes et al. 1998).

For two-compartment simulations, E neurons were characterized
by a somatic voltage Vi,s

E and a dendritic voltage Vi,d
E , with a coupling

conductance of gsd � 18.75 nS. The ratio of somatic to total surface
area was  � 0.3. The current due to the dendritic compartment’s
effect on the soma was gsd �Vi,d

E � Vi,s
E �� k, while the soma’s effect on

the dendrite was gsd�Vi,s
E � Vi,d

E �� �1 � k�. E and SOM connections
targeted the passive dendritic compartment, while PV connections
targeted the somatic compartment. The synaptic conductances were
chosen so that unitary postsynaptic potentials were the same magni-
tude as in the single compartment model.

Spiking neuron connectivity. The network consisted of 400 E, 50
PV, 25 SOM, and 25 VIP neurons with orientation preference ar-
ranged uniformly on (��/2, �/2). For tuned connections, connection
probabilities were given by pij

AB � p0
AB[1 � p2

ABcos(�i
A � �j

B)], where
�i

A is the orientation preference of neuron i in population A. E ¢ E
connections had baseline probability p0

EE � 0.1, SOM ¢ VIP had
p0

SV � 0.4, and all other probabilities had a baseline of 0.6, if they
existed (Pfeffer et al. 2013). p2 Was nonzero only for connections
involving E and PV neurons, with p2

EE � 0.8 and p2
PE � 0.1. For the

network with tuned PV inhibition, p2
EE � 0.8 and p2

PE � 0.1.
External input was provided by background excitatory Poisson

inputs with rates r0
A�1 � r2

Acos��i
A��. These rates were (r0

E, r0
P, r0

S, r0
V) �

(2.4, 0.4, 0.8, 0.3) Hz. This input was tuned only for E neurons with
r0

E � 0.2 and, for the tuned PV network, r2
P� 0.2. To mimic

optogenetic activation, Ii was increased by 25 and 45 pA for PV and
SOM neurons, respectively (55 and 25 pA for the 2 compartment
simulation).

Finally, if a connection existed, the synaptic conductance was
given by gi,syn

AB � GAB, with

G ��
1.66 136.4 68.2 0

5.0 136.4 45.5 0

0.83 0 0 136.4

1.66 27.3 113.6 0
�nS, (12)

leading to inhibitory postsynaptic current sizes consistent with re-
ported data (Pfeffer et al. 2013).

Simulations were done with a time step of 0.1 ms and a maximum
voltage of 20 mV before spike reset.

RESULTS

Inhibitory stabilization of excitatory activity. We begin by
reviewing the dynamics of a simple network with one excit-
atory and one inhibitory population (Wilson and Cowan 1972;
Grossberg 1973; Ermentrout and Cowan 1979). Such networks
have been extensively analyzed, and their dynamics can be
broadly classified into two regimes. In the first regime, the
recurrent excitatory coupling strength WEE is weak, such that
the network activity remains stable even in the absence of
inhibitory feedback. In the second, WEE is strong enough that,
if feedback inhibition were not present, excitatory activity
would be unstable and increase to saturation. A network
satisfying the latter condition is known as an ISN (Murphy and
Miller 2009).

ISNs and non-ISNs have distinct response properties. A
striking difference is the shift in firing rates due to perturba-
tions of the inhibitory population. In non-ISNs, a depolarizing
perturbation applied to inhibitory neurons causes an increase in
their firing rate and corresponding decrease in excitatory firing
(Fig. 1A). The same perturbation applied to inhibitory neurons
within an ISN leads to an initial increase in inhibitory firing
rates, which then leads to suppression of excitatory neurons, as
expected. However, in contrast to non-ISNs, after this initial
transient, inhibitory firing rates begin to decrease due to the
loss of recurrent excitation, eventually reaching a steady state
below their initial value (Fig. 1B). Hence, depolarizating cur-
rent applied to inhibitory neurons surprisingly reduces their
firing rate in the steady state. This “paradoxical effect” of
inhibitory neuron activation has been observed in rat CA1
(Tsodyks et al. 1997) and has been used to explain the dynam-
ics of surround suppression in cat V1 (Ozeki et al. 2009).

We begin by generalizing the “paradoxical effect” of inhib-
itory neuron modulation to networks with multiple inhibitory
neuron subtypes. We consider any network in which neurons
of a given subtype can be treated homogeneously, synaptic
currents are additive, and perturbations are sufficiently weak.
Calculations based upon these assumptions (see MATERIALS AND

METHODS) yield the following result: if depolarizing current is
injected to an arbitrary subset of inhibitory neuron subpopula-
tions and consequently decreases excitatory firing rates, then 1)
if the network is non-ISN, the total inhibitory current recorded
within excitatory neurons should be enhanced, or 2) if the
network is ISN, the total inhibitory current recorded within
excitatory neurons should, paradoxically, be reduced in the
steady state. The same holds in reverse: if excitatory firing
rates increase, then non-ISNs will show reduced inhibitory
current, while ISNs will show increased inhibitory current.

To illustrate this result, we considered a network with three
inhibitory subpopulations (I1, I2, and I3) and coupling between
all populations. A static depolarizing bias input was applied to
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I2, leading to a complex transient response in all populations.
After the network reached steady state, the excitatory firing
rates were reduced. When excitatory coupling was weak, this
reduction was accompanied by an increase in the inhibitory
recurrent recorded onto the excitatory population (Fig. 1C).
However, when the excitatory coupling was increased so that
the network was ISN, the inhibitory current was reduced in the
steady state (Fig. 1D). This reduction was not immediately
visible in the firing rates of the inhibitory populations, some of
which increased and some of which decreased. In particular,
for the chosen parameters, the stimulated population increased
its rate, unlike the two-population case (Fig. 1B).

In summary, the relationship between steady states of excit-
atory firing rate and inhibitory-to-excitatory current determines
whether the system is in the ISN regime. ISNs exhibit the
“paradoxical effect” that a decrease in inhibitory current co-
occurs with a decrease in excitatory firing rates, while the
opposite relationship occurs in non-ISNs. In networks with
only a single inhibitory subpopulation, the monotonic relation-
ship between inhibitory firing rate and inhibitory-to-excitatory
current means that recordings of inhibitory neuron firing rates
can be used as a proxy for this current. When multiple inhib-
itory subpopulations are present, recurrent interactions disso-
ciate the firing rate of any particular subpopulation with the
total inhibition excitatory neurons receive. Hence, firing rates
in response to a perturbation alone are insufficient to charac-
terize the net effect of inhibition.

Recurrent dynamics in mouse V1. In recent years there has
been significant characterization of the circuitry of layer 2/3
and 5 of mouse V1 (Pfeffer et al. 2013). Specifically, paired
recordings have established that pyramidal neurons are inhib-
ited primarily by PV and SOM neurons, SOM neurons are
primarily inhibited by VIP neurons, and PV neurons are
inhibited by both PV and SOM neurons (Fig. 2A). Nonetheless,
prior models of layer 2/3 of mouse V1 differ with respect to the
ISN operating regime. Hansel and van Vreeswijk (2012) de-

veloped a balanced network model with strong recurrence,
placing the network in the ISN regime. In contrast, other
models have assumed that recurrent excitation is weak, placing
the network in a non-ISN regime (Atallah et al. 2012). We
apply the analysis of the previous section to a model network
of layer 2/3 of mouse V1 with PV, SOM, and VIP interneurons
(see MATERIALS AND METHODS) and discuss how the existing
literature may support a non-ISN regime.

We begin by examining the response of the network to
activation of VIP interneurons. VIP activation increases the
gain of E neurons in layer 2/3 of visual cortex during locomo-
tion via disinhibition (Fu et al. 2014) and performs similar
roles in somatosensory, auditory, and prefrontal cortex (Lee et
al. 2013; Pi et al. 2013). We simulated the firing rate network
and applied a depolarizing current to the VIP subpopulation. In
both non-ISN and ISNs, this led to suppression of SOM
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Fig. 1. Inhibition stabilized networks (ISNs) and non-ISNs. A, left: schematic of non-ISN with excitatory (E) and inhibitory (I) populations. Open circles represent
inhibitory synapses while closed circles represent excitatory synapses. Right: E and I population firing rates in response to a stimulus applied to the I population
(blue bar). B: same as A but for an ISN in which the EE connection is strong. C, left: schematic of non-ISN with 3 inhibitory populations. Right: population firing
rates and change in magnitude of the total excitatory and inhibitory currents received by the excitatory population in response to a stimulus applied to population
I2 (blue bar). D: same as C but for an ISN.
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Fig. 2. Connectivity in mouse V1 and disinhibition. A: connectivity between
neuronal subtypes in mouse V1. Open circles represent inhibitory synapses
while closed circles represent excitatory synapses. SOM, somatostatin; PV,
parvalbumin. B, top: firing rates of neuronal subpopulations in a non-ISN in
response to activation of vasointestinal peptide (VIP)-expressing interneurons
at T � 100 ms. Bottom: change in magnitude of total excitatory and inhibitory
currents received by the excitatory subpopulation. C: same as B for an ISN.
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neurons and activation of E neurons (Fig. 2, B and C). Con-
sistent with the predictions of the previous section, this acti-
vation was accompanied by reduced inhibition onto E neurons
in the non-ISN case (Fig. 2B) but increased inhibition in the
ISN case (Fig. 2C).

To investigate what controls the magnitude of VIP-mediated
disinhibition, we can use our knowledge of network connec-
tivity to derive expressions for the response to the perturbation.
Let WAB � 0 represent the effective strength of connections
from population B to population A. Denote the E, PV, SOM,
and VIP populations by E, P, S, and V, respectively. Then, the
steady-state change in E firing rate can be written as �sE 	
WSV[WES(1 � WPP) � WEPWPS]. Similar expressions can be
obtained for different forms of perturbation (see MATERIALS AND

METHODS). This equation has two terms: the first is propor-
tional to WES, representing SOM inhibition of E neurons,
while the second is proportional to WEPWPS, the strength of
the E�PV�SOM pathway. For the net effect of VIP activa-
tion to be disinhibitory, the first term must be larger than the
second, a requirement that is true in layer 2/3 of mouse V1
(Adesnik et al. 2012).

Does mouse visual cortex operate in the ISN or non-ISN
regime? In layer 2/3 of anesthetized mice, optogenetic suppres-
sion of PV neurons leads to increased E neuron firing accom-
panied by reduced total inhibitory current recorded in E neu-
rons (Atallah et al. 2012). This argues that layer 2/3 of
anesthetized mouse V1 is a non-ISN, calling into question
whether standard balanced network models can account for its
dynamics (Hansel and van Vreeswijk 2012). On the other hand,
other layers of V1 such as layer 4 receive more intralaminar
excitation than layer 2/3 (Lien and Scanziani 2013). Future
experiments will determine whether these other layers lie in the
ISN regime.

Mechanisms of surround suppression. We next study the
effects of surround suppression in a spatially extended net-
work. Lateral E projections in layer 2/3 preferentially target
SOM neurons, which increase their firing rate during surround
stimulation unlike PV neurons (Adesnik et al. 2012). This
appears to be in contrast to previous models of surround
suppression motivated by cat V1, in which an ISN exhibits
decreased excitatory and inhibitory activity during surround
suppression (Ozeki et al. 2009).

We extended the model of the previous section by modeling
E, PV, SOM, and VIP populations at each point in a one-
dimensional space. Networks at different spatial locations
interacted via long-range excitatory projections that targeted
SOM neurons with a Gaussian profile (see MATERIALS AND

METHODS). Stimuli were modeled as Gaussian depolarizing
current applied to E and PV neurons. Stimuli evoked spatially
localized activity whose width increased as the stimulus size
was increased from center-only (Fig. 3B) to center � surround
(Fig. 3C).

To examine surround suppression, we measured the firing
rate of neurons at position zero (center of the stimulus-evoked
depolarization) as a function of the stimulus width. All neuron
subtypes exhibited surround suppression, except for SOM
neurons, which exhibited facilitation (Fig. 3D). This was true
for both ISN and non-ISNs. Hence, the presence of surround
facilitation in SOM neurons (Adesnik et al. 2012) is compat-
ible with the network being in the ISN regime.

This observation can be understood using our perturbative
framework, examining the response of an isolated population
in response to surround input to the SOM population. In this
case, the change in SOM firing rate can be written as �sS 	
(1 � WPP)(1 � WEE) � WEPWPE. Since ISNs have WEE � 1,
then the sign of the first term in this expression depends on
whether the network is ISN or not: if it is ISN, the term is
negative, otherwise it is positive. The second term represents
the strength of the EºPV loop. If the network is not ISN, both
terms are positive and �sS � 0 always. On the other hand, if
the network is ISN, �sS may be positive or negative. Without
strong EºPV recurrence, the first term will dominate and �sS

will be negative. On the other hand, strong EºPV recurrence

CenterSurround
A

B

C

D

E 1 2 3
2

3

4

5

6

7

8

Relative size

1 2 3
2

3

4

5

6

7

8

Fi
rin

g 
ra

te
 (H

z)

Relative size

-5 0 5
0

4

8

-5 0 5

Position

0

4

8

-5 0 5
0

4

8

Fi
rin

g 
R

at
e 

(H
z)

-5 0 5

Position

0

4

8

Fi
rin

g 
R

at
e 

(H
z)

ISNnon-ISN

Surround

ESOM

PV

VIP

ESOM

PV

VIP

ESOM

PV

VIP

1 2 3

−1.5

−1.0

−0.5

0.0

1 2 3
−0.5

0.0

∆C
ur

re
nt

 (H
z) Inh

Exc

Fig. 3. Dynamics of surround suppression. A: surround suppression circuit.
Local networks as in Fig. 2 interact via long-range projections from excitatory
subpopulations to SOM subpopulations (blue lines). B: firing rates of each
subpopulation as a function of distance from stimulus center, when a center
stimulus is presented. C: same as B for a center � surround stimulus. D: firing
rates of each neuronal subtype at the stimulus center, as a function of relative
stimulus size. E: change in magnitude of total excitatory and inhibitory
currents received by excitatory neurons at the stimulus center.

1403VISUAL CIRCUITS WITH MULTIPLE INTERNEURON SUBTYPES

J Neurophysiol • doi:10.1152/jn.00732.2015 • www.jn.org



can shift �sS toward positive values. As connections between
E and PV neurons are strong in mouse V1 (Pfeffer et al. 2013),
it is likely that this term is indeed large, and therefore the
surround facilitation of SOM neurons is not sufficient to alone
determine whether mouse V1 is in the ISN or non-ISN regime.

As before, however, the change in total inhibitory current
onto E neurons during surround suppression does differentiate
between non-ISN and ISNs. In non-ISNs, surround suppression
is accompanied by increased inhibition, while for ISNs it is
accompanied by decreased inhibition (Fig. 3E). We note that
the above conclusion is strictly true only when the total amount
of excitation received by E neurons at the stimulus center is
unchanged when the surround stimulus is presented.

Recordings in layer 2/3 of mouse V1 suggest that optoge-
netic activation of increasing area recruits increasing inhibitory
current onto pyramidal neurons at the center of the activated
area (Adesnik et al. 2012). This appears in contrast to studies
in cat V1 (Ozeki et al. 2009), in which surround stimuli led to
reduced inhibitory current at the stimulus center. However,
because the excitatory current at the stimulation center was not
controlled, it is possible that the optogenetic experiments in
mouse V1 are not representative of surround suppression
dynamics.

Mechanisms of division and subtraction in recurrent
circuits. Above, we neglected orientation tuning of neurons,
focusing only on stimuli that uniformly activate neurons in a
particular spatial location. On the other hand, if neurons are
tuned to specific stimulus features, then evoked states will
involve differential activation of neurons within a local net-
work depending on their stimulus preferences. Recent studies
have shown that weak to moderate perturbations of PV and
SOM circuits in layer 2/3 of mouse V1 have differential effects
on E neuron orientation tuning. Specifically, activation of PV
neurons divisively modulates E neuron responses, while acti-
vation of SOM neurons subtractively modulates E neuron
responses (Atallah et al. 2012; Wilson et al. 2012; but see Lee
et al. 2012). The circuit mechanisms underlying these compu-
tations remain unclear.

To address how inhibition either divides or subtracts neuron
responses, we consider a simplified model of E neuron activity
within a local network. In our model, the steady-state firing rate
of an E neuron tuned to orientation � is given by sE(�) �
fE[IE(�)], where fE(·) is the input current to firing rate transfer
function and IE(�) is the subthreshold input, a sum of excitatory
and inhibitory components (Fig. 4A). For now, we consider
mechanisms that modulate total inhibition, but not excitation,
consistent with the weak recurrent excitation in mouse layer
2/3 (Atallah et al. 2012).

Assuming fE is linear and the only orientation-tuned input
arises from external sources, then any increase of recurrent
inhibition will have a purely subtractive effect on E responses
(Fig. 4A, right). This is because the tuned component of the
input remains unchanged. For a modulation of inhibitory inputs
to cause division when fE is linear, the tuned component of the
input must be suppressed, which can be accomplished by
enhancing tuned inhibition (Fig. 4B).

We next consider the case of nonlinear fE. It has been argued
that the responses of visual cortical neurons are best described
by an expansive power-law nonlinearity (Hansel and Van
Vreeswijk 2002; Fourcaud-Trocmé et al. 2003; Murphy and
Miller 2003), with support from in vivo whole cell recordings

in cat V1 (Priebe et al. 2004). In this case, a uniform decrease
in the subthreshold input to the system nonetheless results in
approximate division (Fig. 4C). This is because the slope of fE
is higher for preferred stimuli than nonpreferred stimuli (Han-
sel and Van Vreeswijk 2002; Murphy and Miller 2003). How-
ever, for subtractive effects to occur in this nonlinear case, the
subthreshold input must be sharpened. This sharpening is only
consistent with a withdrawal of tuned inhibition (Fig. 4D). We
conclude that the implementation of realistic power-law non-
linearities makes division more robust (Hansel and Van
Vreeswijk 2002; Murphy and Miller 2003) but makes the
mechanisms necessary to support subtraction more complex.
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We next investigate how these computations may be performed
in a realistic V1 circuit model with distinct inhibitory
subpopulations.

Division and subtraction with tuned inhibition. To investi-
gate the insights about subtraction and division from the
phenomenological model (Fig. 4), we constructed a spiking
neuron model network of layer 2/3 mouse V1 constrained by
biological data. The network contained E, PV, SOM, and VIP
neurons following, at the population level, the same connec-
tivity rules as before (Fig. 3A). However, to fully specify the
network architecture, the specific connectivity between simi-
larly or dissimilarly tuned neurons must be prescribed. Ana-
tomical studies have shown that similarly tuned E neurons in
layer 2/3 are more likely to be connected (Yoshimura et al.
2005; Ko et al. 2011) but that the strength of these connections
is weak relative to feedforward input (Hofer et al. 2011;
Atallah et al. 2012). Specific connectivity may also exist for
PV but not SOM neurons (Yoshimura and Callaway 2005;
Wilson et al. 2012), although the extent to which inhibitory
neurons exhibit tuning is controversial (Kerlin et al. 2010;
Bock et al. 2011). Inhibitory currents recorded in E neurons
exhibit orientation tuning (Tan et al. 2011), although it is
weaker than that of excitatory currents (Liu et al. 2011; Atallah
et al. 2012), suggesting that at least some specificity in inhib-
itory to excitatory connections exists. We aimed to determine
the extent to which such specific connectivity was necessary to
obtain the divisive and subtractive effects reported in the
literature. We therefore studied a network in which PV neurons
exhibited tuning and then contrasted its behavior to networks in
which they did not.

The network consisted of 500 neurons with realistic connec-
tivity strengths, cellular and synaptic parameters, and short-
term plasticity dynamics (Fig. 5A).We examined the network’s
response to an oriented stimulus in three states: the control
state, the PV activation state in which PV neurons received
depolarizing current mimicking the effects of optogenetic ac-
tivation of PV neurons, and the SOM activation state (Fig. 5B).

PV activation has been shown to act divisively (Atallah et al.
2012; Wilson et al. 2012; Lee et al. 2014). In our network,
consistent with this observation, activation of PV neurons led
to approximately divisive shifts in orientation tuning (Fig. 6A,
compare black and green curves). These shifts arose from two
effects. First, the magnitude of the tuned inhibition provided by
PV neurons increased, preferentially suppressing responses to
stimuli at the peak of the tuning curve (Fig. 6B). Second, the

firing rate nonlinearity also preferentially suppressed responses
at the peak of the tuning curve, since the slope of fE was greater
for such stimuli (Murphy and Miller 2003). Hence, tuned
inhibition and/or a firing rate nonlinearity can account for
division by PV neurons, as suggested previously (Atallah et al.
2012; Wilson et al. 2012).
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We next considered activation of SOM neurons, which has
been shown to subtractively shape E neuron tuning curves,
sharpening orientation selectivity (Wilson et al. 2012). Since
tuned excitation does not increase during SOM activation, the
only way for the total input to be sharpened is a withdrawal of
tuned inhibition (Fig. 4D). Since SOM neurons do not appear
to provide direct tuned inhibition (Wilson et al. 2012) and any
they did would likely be enhanced during activation, this may
only be accomplished through recurrent interactions within the
local interneuron network. Notably, suppression of PV neurons
by SOM neurons (Fig. 3A) is consistent with such a with-
drawal. Indeed, in our model, SOM activation led to approxi-
mately subtractive shifts on E neuron tuning (Fig. 6A, compare
black and orange curves), due to a decrease in tuned inhibition
driven by suppression of PV input (Fig. 6, B–F). Hence,
SOM-induced suppression of tuned PV neurons is one mech-
anism that can lead to sharpening of subthreshold input and
consequently subtractive shifts in excitatory tuning curves.

Alternative mechanisms for division and subtraction. In the
previous section, in order to obtain subtractive shifts in excit-
atory tuning curves, it was necessary to assume that subthresh-
old input was sharpened by withdrawal of tuned inhibition.
Assuming inhibition from PV neurons was tuned while that
from SOM neurons was not then led to PV-mediated division
and SOM-mediated subtraction. This effect could be quantified
as an increase in the orientation selectivity index (OSI) of E
neuron tuning curves during SOM activation (Fig. 7A). A
network without tuned inhibition was unable to produce this
effect, with manipulations of both PV and SOM neurons
leading to division (Fig. 7B).

However, an additional potential explanation for these dif-
ferential effects of PV and SOM activation is that these
neurons target different compartments of pyramidal neurons:
PV and SOM neurons, respectively, tend to contact proximal to
the soma or distally on the dendritic tree (Markram et al. 2004).
We therefore investigated whether this difference alone could
lead to both divisive and subtractive effects of activating each
population, even in the absence of tuned inhibitory connectiv-
ity. We modified the pyramidal neurons in our spiking network
so that they had both a somatic and passive dendritic compo-
nent. Parameters were modified so that PV, SOM, and VIP
neuron spiking again led to integrated inhibitory postsynaptic
potential sizes consistent with experimental measurements
(Pfeffer et al. 2013). In such a network, the effect of PV or
SOM neuron activation had identical effects on pyramidal
neuron tuning curves, as in the single-compartment case (Fig.
7C). Hence, passive dendritic integration is unlikely to support
both subtraction and division on the same target neuron.

In summary, tuning curve division by PV neurons may be
mediated by either a reduction of tuned input or firing rate
nonlinearities, and both of these are likely to occur in vivo.
Tuning curve subtraction by SOM neuron activation is less
straightforward and may be mediated by at least three distinct
mechanisms. If excitatory f-I curves are linear, untuned inhi-
bition could lead to subtraction (Fig. 8A). In this case, no
change in inhibitory tuning would be present during SOM
activation. If excitatory f-I curves are nonlinear, suppression of
tuned PV input by SOM activation could mediate subtraction
(Fig. 8B). In this case, a reduction in tuned inhibition onto
neurons would be recorded intracellularly. Alternatively, a
sharpening of tuned excitation by some previously undescribed

mechanism could also support subtraction (Fig. 8C). If this
occurred, the tuning of excitatory, but not inhibitory, currents
recorded at the soma would increase during SOM activation.
Hence, these three mechanisms can be differentiated by their
effects on the tuning of excitatory and inhibitory currents
during SOM activation. We further note that assuming strong,
tuned excitatory recurrence can help explain tuning curve
division (Ben-Yishai et al. 1995) but not subtraction by SOM
neuron activation. This is because SOM-mediated suppression
of E neurons will lead to a reduction in the sharpness of
subthreshold tuning and hence division, rather than subtraction.

DISCUSSION

Inhibitory stabilization and E/I balance in mouse V1. We
have outlined a theory for the dynamics of recurrent E/I
networks with multiple inhibitory neuron subtypes. A key
element of this theory is whether the network is in the ISN
regime or not. In mouse V1, evidence for this is equivocal. Our
theory demonstrates that recording total inhibitory current
while activating inhibitory neurons can unambiguously differ-
entiate the ISN and non-ISN regimes.

Current evidence in favor of the non-ISN regime for layer
2/3 includes the dynamics of SOM neurons during surround
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suppression (Adesnik et al. 2012), the reduction in inhibitory
input during PV neuron inactivation (Atallah et al. 2012), and
the apparently weak excitatory connectivity in this region
(Jiang et al. 2015). Evidence in favor of the ISN regime
includes reports that surround suppression occurs in all inhib-
itory neurons, including SOM neurons (Ayaz et al. 2013; Pecka
et al. 2014). It is also possible that the dynamical regime of the
network may be modulated by other factors, such as locomo-
tion (Fu et al. 2014).

If layer 2/3 of mouse V1 is a non-ISN, theoretical models of
this area must be modified to account for this fact. Non-ISNs
rule out standard “balanced” network models with strong
recurrent excitation and inhibition (van Vreeswijk and Som-
polinsky 1998; Hansel and van Vreeswijk 2012; Pehlevan and
Sompolinsky 2014) and argue against mechanisms of orienta-
tion selectivity that rely on strong recurrent excitation (Ben-
Yishai et al. 1995). However, it should be noted that the
“balanced” state can also exist when strong feedforward exci-
tation is balanced by strong recurrent inhibition, without re-
current excitation (Zillmer et al. 2009). It has been argued that
strong recurrent inhibition decorrelates the inputs to different
neurons in recurrent networks, leading to sparse and irregular
firing (Renart et al. 2010; Tetzlaff et al. 2012; Ly et al. 2012;
Middleton et al. 2012). This could explain the origin of
asynchronous firing without requiring strong recurrent excita-

tion as in standard balanced networks (van Vreeswijk and
Sompolinsky 1998).

Conclusions for layer 2/3 of mouse V1 may not generalize to
other cortical regions or layers or analogous regions in differ-
ent species. Indeed, recurrent excitation in layer 4 of mouse V1
has been shown to be large relative to feedforward input (Lien
and Scanziani 2013), and cat V1 has been convincingly argued
to be ISN (Ozeki et al. 2009). Our theory provides a framework
in which to determine the extent to which the dynamical
regime of V1 depends on species, layer, or both.

Surround suppression and locomotion. The lack of surround
suppression in SOM neurons has been observed in running
animals (Adesnik et al. 2012). Other studies have argued that
all neurons exhibit surround suppression (Pecka et al. 2014)
and that this effect is reduced by locomotion (Ayaz et al. 2013).
Surround suppression in all neuron types, including inhibitory
neurons, would result in a reduction in inhibition during
surround suppression, consistent with cat V1 in the ISN regime
(Ozeki et al. 2009). However, it is possible that some of the
effects reported in these experiments may be due to surround
suppression occurring earlier in the visual processing hierar-
chy. Further experiments are needed to determine the circuit
mechanisms that contribute to surround suppression and how
each are affected by locomotion.

Our work shows that a lack of surround suppression in SOM
neurons can be consistent with either ISN or non-ISN regimes.
Measuring the total inhibitory current during surround stimu-
lation (Ozeki et al. 2009) would differentiate between these
two possibilities.

Mechanisms of subtraction and division. The effects of PV
and SOM neurons on E tuning have been the subject of debate.
Atallah et al. (2012) showed that activation of PV neurons
leads to division of E tuning, corroborated by Wilson et al.
(2012), who also showed SOM neurons act subtractively. Lee
et al. (2012), in contrast, obtained the opposite result, with PV
and SOM neurons performing subtraction and division, respec-
tively. Subsequent experiments in Lee et al. (2014) suggested
that this difference may have been be due to the stronger
stimuli used in the original experiments. Seybold et al. (2015)
showed that in auditory cortex there is a large heterogeneity
across pyramidal cells in the degree of subtractive and divisive
modulation recruited by activation of both PV and SOM
population. The authors conclude that the underlying mecha-
nisms for division and subtraction are likely complex and
simple subtractive/divisive labeling is perhaps oversimplified.

A recent study argued that distinctions between subtraction
and division may be due to the temporal overlap between
excitatory and inhibitory neuron activation (El-Boustani and
Sur 2014). In this framework, concurrent activation of excit-
atory and inhibitory neurons results in inhibition whose mag-
nitude depends on the current excitatory firing rate, while
activation of inhibitory neurons without excitatory activation
results in inhibition with a fixed magnitude. If PV neurons are
activated by stimuli in tandem with E neurons, while SOM
neurons are activated at later latencies, this could result in
divisive and subtractive, respectively, effects on E neuron f-I
curves. However, it is unclear how this mechanism would
explain divisive and subtractive shifts in orientation tuning
curves without tuned inhibition. Such shifts require the feed-
back inhibition to be specifically modulated by the firing rate of
neurons with similar orientation preference, which cannot
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occur if excitatory and inhibitory neurons are connected
randomly.

We have provided three possible mechanisms for division
and subtraction of tuning curves mediated by PV and SOM
neurons, respectively. When f-I curves are nonlinear, subtrac-
tion requires sharpening of subthreshold input, and identifying
the mechanism behind this sharpening becomes the key objec-
tive. One mechanism assumes tuned PV inhibition mediates
this effect (Fig. 8A). The tuning of PV neurons has been the
subject of debate, and further experiments are needed to
determine whether tuning of inhibitory inputs contributes sub-
stantially to visual processing in mouse V1 (Runyan et al.
2010; Runyan and Sur 2013; Kerlin et al. 2010; Bock et al.
2011). If inhibition is completely untuned and f-I curves are
nonlinear, this sharpening must come from a modulation of
excitatory input (Fig. 8C). We found that a two-compartment
model with a passive dendrite did not yield the necessary effect
without tuned inhibition. Standard models of nonlinear den-
dritic integration assume that dendritic inhibition provides
multiplicative gain control (Mehaffey et al. 2005; Murayama et
al. 2009; Jadi et al. 2012), also inconsistent with the sharpening
of excitatory input required for subtractive modulation. It is
also possible that f-I curves are linear in layer 2/3 pyramidal
neurons, so that subtraction does not require sharpening of
subthreshold input (Fig. 8B). This would require a substantial
rethinking of pyramidal neuron response properties, which
have been argued to be best described by a power law nonlin-
earity (Hansel and Van Vreeswijk 2002; Fourcaud-Trocmé et
al. 2003; Priebe et al. 2004).

Our theory demonstrates that these possibilities can be tested
by determining whether changes in the tuning of excitatory and
inhibitory conductances, or neither, accompany interneuron
activation that causes subtractive tuning curve modulations
(Fig. 8). Future experiments in mouse V1 should be guided by
circuit models that incorporate recurrent interactions between
different inhibitory subpopulations, and the present study rep-
resents a first step in this direction.
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