
nature neuroscience  VOLUME 19 | NUMBER 3 | MARCH 2016 383

F o c u s  o n  n e u r a l  c o m p u tat i o n  a n d  t h e o r y  r e v i e w

A major challenge in systems neuroscience is understanding the pat-
terns of neural activity that support sensory processing1, memory2, 
decision-making3 and cognition4. This activity emerges from interac-
tions between neurons5, as well as bottom-up sensory and top-down 
modulatory inputs6. Determining the physiological basis of these 
activity patterns will provide constraints on theories of neural com-
putation, as well as bridges between physiology and cognition.

Different statistical approaches have been used to uncover impor-
tant features of neuronal activity, such as the functional coupling in a 
network7, the dimensionality of population responses8 and their vari-
ability9–11. Although these approaches identify the essential statistical 
features of large-scale network activity, they give little insight into the 
physiological causes of the observed activity patterns. Moreover, the 
high dimensionality and limited amount of available data obtained 
from neural recordings require the development of new statistical 
approaches12,13. As recordings from larger and larger groups of neu-
rons become more common14, identifying constraints on the activity 
will become essential. Computational models that capture the essen-
tial biophysical properties of actual neurons can be better constrained 
and interpreted than models that make no assumption about the 
dynamics of individual units and their interactions.

Mechanistic models have long been used to understand the  
receptive field organization and trial-averaged dynamics of single 

neuron responses. Most famously, Hubel and Wiesel postulated  
the structure of thalamic projections to visual cortex from single  
neuron firing responses to bars of light15. Others have used mechanistic  
models to examine the effect of feedforward16 and recurrent17,18 neu-
ral architectures on stimulus selectivity, providing targeted predic-
tions for subsequent experimental studies of vision19,20 and other 
modalities21,22. This approach is not restricted to sensory areas in 
which neural responses are easily affected by changes in stimuli. For 
example, there has been extensive work in building circuit models 
of persistent activity in prefrontal cortex during working memory 
tasks23 and the formation of grid cell responses in hippocampus24, 
all replicating trial-averaged single neuron responses. We propose to 
extend this modeling approach by outlining how specific biophysical 
aspects of cellular and circuit structure can explain the variability of 
neuronal response.

Of particular interest is the trial-to-trial covariability between the 
spiking activity from simultaneously recorded neuron pairs. These 
noise correlations provide a simple and robust measure of the internal 
coherence of neural activity25. There is a vibrant debate about how 
noise correlations affect neural coding26–29. In this review, however, 
we focus on the relation between noise correlations and underlying 
physiology of the network.

Noise correlations are frequently attributed to the presence of com-
mon afferent projections to a neuron pair30. A variety of mechanisms, 
however, can lead to correlated neural responses. On the one hand, 
direct common projections are not required if the presynaptic ensem-
bles are themselves correlated31. On the other hand, correlations from 
shared excitatory and inhibitory projections can cancel, resulting in 
low net correlations32. Correlations can also reflect local recurrent 
connectivity33–35 or feedforward inputs such as those induced by fluc-
tuations in bottom-up or top-down projections36. Finally, the cellular 
nonlinearities that transfer input currents to spike outputs are also 
important in shaping neural correlations37–39. It is this diversity in 
the causes of noise correlations that make them challenging to study 
from a mechanistic perspective.

1Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania, 
USA. 2Center for the Neural Basis of Cognition, Pittsburgh, Pennsylvania, USA. 
3Center for Theoretical Neuroscience, Columbia University, New York, New York, 
USA. 4Department of Applied and Computational Mathematics and Statistics, 
University of Notre Dame, Notre Dame, Indiana, USA. 5Interdisciplinary Center 
for Network Science and Applications, University of Notre Dame, Notre Dame, 
Indiana, USA. 6Allen Institute for Brain Science, Seattle, Washington, USA. 
7Department of Mathematics, University of Houston, Houston, Texas, USA. 
8Department of Biology and Biochemistry, University of Houston, Houston, Texas, 
USA. Correspondence should be addressed to B.D. (bdoiron@pitt.edu).

Received 14 October 2015; accepted 12 January 2016; published online  
23 February 2016; doi:10.1038/nn.4242

The mechanics of state-dependent neural 
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Simultaneous recordings from large neural populations are becoming increasingly common. An important feature of population 
activity is the trial-to-trial correlated fluctuation of spike train outputs from recorded neuron pairs. Similar to the firing rate of single 
neurons, correlated activity can be modulated by a number of factors, from changes in arousal and attentional state to learning and 
task engagement. However, the physiological mechanisms that underlie these changes are not fully understood. We review recent 
theoretical results that identify three separate mechanisms that modulate spike train correlations: changes in input correlations, 
internal fluctuations and the transfer function of single neurons. We first examine these mechanisms in feedforward pathways and 
then show how the same approach can explain the modulation of correlations in recurrent networks. Such mechanistic constraints 
on the modulation of population activity will be important in statistical analyses of high-dimensional neural data. 
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An often-used strategy in systems neuroscience is to record neural 
activity under different neural states. State comparisons have been made 
between spontaneous and stimulus-evoked neural activity40, when atten-
tion is directed in or outside the receptive field of a population41, differ-
ent levels of arousal42, and active versus passive sensory acquisition43. 
State modulation is essential for understanding neural activity that is 
specific to a certain neural computation. It also serves another purpose: it 
offers important clues about the circuit and cellular mechanisms under-
lying collective neural activity. Different mechanisms could explain the 
correlations observed under a single state. However, only some of these 
mechanisms will be consistent with observations from multiple states.

We begin our review with a partial listing of examples of state-
dependent modulation of neural correlations. We next synthesize  
several theoretical results into one general framework that includes 
three mechanisms of correlation modulation: pre-synaptic corre-
lations, internal fluctuations and neural transfer. We explore these 
distinct mechanisms separately using a feedforward circuit model, 
highlighting their differences. We finish by discussing how these 
insights can inform the analysis of correlation modulation in recurrent 
networks, where several mechanisms can be simultaneously engaged. 
Our review highlights how modulations in neural correlations could 
provide a window into the physiology that underlies state-dependent 
changes in the nervous system.

Modulation of neuronal correlations
Simultaneous recordings from large populations of neurons are  
becoming commonplace in systems neuroscience14. Consider two spike 
trains from the kth trial of such an experiment, y t m t tk

m
k

1 1( ) ( )= −∑ d  
and y t m t tk

m
k

2 2( ) ( )= −∑ d  where the Dirac delta function d( )t tim
k−  

represents the mth spike from neuron i. The spike count correlation 
coefficient25,44 between the two spike trains is 

r( , )
( , )

( ) ( )
n n

Cov n n

Var n Var n
k k

k k

k k1 2
1 2

1 2
=

Here n y t dti
k

i
kT= ∫0 ( )  is the random spike count computed over a 

duration T on trial k, and Cov n nk k( , )1 2  and Var ni
k( ) denote the covari-

ance and variance over trials, respectively. When ρ appears without 
a subscript it always refers to output spike correlations. Over small 
durations (T ~ 1−10 ms), ρ measures spike train synchrony, whereas, 
over long durations (T ~ 100−1,000 ms), it captures shared fluctua-
tions in the firing rates of the two neurons over trials.

A growing list of studies show large heterogeneity in correlations 
measured across the nervous system, as well as from neuron pairs 
in the same brain region25,45–47. Nevertheless, the average correla-
tion coefficient across paired spike trains is typically small, ranging 
from 0.05 to 0.3 depending on the brain region, brain state and joint 
stimulus preference of the neuron pair25,45,48. Here we primarily con-
sider long-timescale correlations, although our general framework is 
applicable to arbitrary time windows.

In this Review, we consider correlation changes induced by a 
broadly defined state change of the nervous system (Box 1). We 
present a partial list of examples in Table 1, with each entry describ-
ing two states, which show that ρ can be modulated considerably in 
different animals, brain regions and cognitive contexts.

In sum, the diversity in the conditions and states in which mod-
ulations in correlation occurs suggests that distinct physiological 
mechanisms may be responsible. We next present a unified framework 
to discuss and compare a number of mechanisms that can impact 
the correlation coefficient, ρ, as well as how it is modulated across 
brain states.

Central framework for correlation modulation
Biological neural circuits consist of neurons belonging to a variety of 
cell classes wired in complex ways. It is tempting to try to infer the 
structure of these circuits and the physiological properties of neurons 
in them from multicellular recordings from subsets of neurons. Such 
an approach is fraught with difficulties49, many of which are a result of 
the fact that only part of the population is observed. Here we describe 
an alternative strategy that is more modest in scope, but provides a 
general framework for discussing how modulations in spiking cor-
relations depend on biophysical changes in the underlying circuit to 
which the neurons belong.

To start, we consider a pair of simultaneously recorded neurons that 
are members of a larger, yet unknown, neural circuit (Fig. 1). To sim-
plify our analysis, we assume that neurons in the pair are not directly 
coupled (although this is not required for our treatment). Using this 
assumption, we explore how the cellular properties of the postsynaptic 
neurons, and those of the presynaptic circuit that drives them, influence 
correlation transfer.

On trial k of the experiment, neuron i of our pair (i = 1 or 2) 
responds to its afferent inputs, x ti

k( ), with ni
k spikes over the window 

T. We consider values of T that are much larger than the synaptic and 
membrane timescale of the neurons, thereby not explicitly measur-
ing the fine temporal structure of the spike trains. For simplicity,  
we assume that Var n Var n Var n( )1 2= ( ) = ( ), so that the correlation 
coefficient is r = ( ) ( )Cov n n Var n1 2, / .

The two neurons do not interact directly, so r ≠ 0  implies that the 
presynaptic inputs to the neurons, x t1( ) and x t2 ( ), are themselves 
correlated. We quantify this correlation using the input covariance 

Co x xv ˆ , ˆ1 2( ),
between the integrated synaptic inputs, 

x x t dti
k T

i
k = ∫ ( )0

. 

When the input covariance is small we can use the linear approximation

 ̂ ˆ ˆ, ,x n n L x xCov Cov1 2
2

1 2( ) ≈ ( ) 

to relate input and output covariance37. Here L L L1 2= =  is the linear 
response of the target neuron50,51. Briefly, for weak common fluctua-
tions, s(t), we have n n Lsi i≈ +0 ˆ, where 〈·〉 denotes the expectation  
over trials, 〈 〉ni0  is the mean spike count of the of neuron i at its 
operating point (defined by s = 0), and ŝ s t dtT= ∫ ( )0 . The common  
fluctuations then simply perturb the neuron pair’s joint activity 
about an operational point (where Cov n n10 20 0,( ) = ). If the operating  
point changes (say through a modulation), the linear approximation  
may change L, but equation (1) remains valid. However, if pert-
urbations are too large, this linear approximation can break down, 

(1)(1)

The operating state of the brain, or simply state, refers to the context 
under which neural activity is recorded. This includes several possibili-
ties. The cognitive state is determined by an animal’s level of arousal, 
attentional focus or degree of engagement in a task. In the absence of a 
stimulus or task, the neural network is in the spontaneous state, as  
opposed to an evoked state. Stimuli that do not directly drive a neuron, 
yet recruit a non-classical surround, can change the processing state 
of a neuron. A change in stimulus features in a neuron’s receptive field 
may change its firing rate. However, it does not change the context 
under which the neural activity is observed, and hence such stimulus 
features do not determine a state.

Box 1 Neural state
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although it could still provide qualitative insights. For large time 
windows, T, the response function L/T is approximately the deriva-
tive (slope) of the firing rate versus input curve of a neuron at the 
operational point37,38.

We assume that the response of each neuron is the result of a leaky, 
potentially nonlinear integration of its inputs. The total integrated 
input, x̂ ti ( ), includes presynaptic and postsynaptic components. The 
covariance between presynaptic inputs, Cov P P1 2,( ), is determined by 
both common projections to the neuron pair, as well as correlations 
in the activity of the presynaptic pool of neurons31,32. From the van-
tage point of a postsynaptic neuron pair, these sources are indistin-
guishable. If we neglect synaptic and dendritic nonlinearities, then 
Cov Cov P Px xˆ ˆ, ,1 2 1 2( ) ∝ ( ), where the covariance on the right is between 
the activities, Pi

k, of the population presynaptic to neuron i (Fig. 1).
Postsynaptic effects, such as stochastic vesicle release from synaptic 

contacts or channel fluctuations, are another source of variability52,53. 
Given that these fluctuations are private to each neuron, we assume 
that they are uncorrelated between the neuron pair. Furthermore, they 
are also likely uncorrelated with the activity of the presynaptic popula-
tion, so that Var Var P Var Nxi i iˆ( ) ∝ ( ) + ( ) , where Ni is the postsynaptic 
noise (integrated over T) in neuron i (Fig. 1). The total correlation 
coefficient of the inputs is then 

r r
x

x

Cov

Var

Cov P P
Var P Var N

P
R

x x

x
= =

+
=

+
( )

( )
( )

( ) ( )
ˆ ˆ

ˆ
, ,1 1 22

1

where R Var N Var Px = ( ) ( )/  and rP Cov P P Var P= ( ) ( )1 2, / . We again 
assume that Var x Var x Var xˆ ˆ ˆ( ) = ( ) = ( )1 2 , and similarly for the other 
variances. The coefficient Rx then measures the excess fluctuations 
in the input current resulting from internal processes in each neuron. 
Ultimately, we are interested in the variability of the spiking output 
of a neuron, ni. Unfortunately, there is no simple linear relationship 
between Var ni( ) and Var xiˆ( )54. However, we make the reasonable 
assumption that there is a monotonic relationship between Ry and Rx, 
and hereafter make no distinction between Rx and Ry.

Finally, we consider the network to be in one of two states  
(labeled A and B) that differ in their correlation coefficient ρ. This 
analysis then yields the following expression for the ratio of ρ in the  
two states, A and B 

r
r

r
r

B

A
P
B

P
A

B

A

B

A
R
R

L
L

=










+
+





















−
1
1
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The modulation in ρ between the two states results from three 
separate terms. First, r rP

B
P
A/  captures state-dependent changes in 

the correlations of the presynaptic input. Second, 1 1 1+( ) +( ) 
−R RB A/  

captures state-dependent changes in the internal fluctuations in each 
neuron in the pair. Third, [ / ]L LB A 2 captures state-dependent changes 
in the response gain of the transfer from synaptic input to the neurons’ 
output. Generally L LA B≠ , as the linearization about the operational 
point at state A will typically differ from that at state B.

(2)(2)

Table 1 Examples of state-dependent modulation of neural correlation ρ

System Modulation Window length T ρB/ρA References

Extracellularly recorded spike trains

Electrosensory (fish) Spatially broad (A) versus compact (B) stimuli 50 ms 0.68 132

V4 (macaque) Unattended (A) versus attended (B) (spatial) 200 ms, 100 ms 0.70, 0.66 96,133

V4 (macaque) Unattended (A) versus attended (B) (spatial + contrast discrimination) 333 ms (0.85,1.05)* 134

V4 (macaque) Attended with PFC lesion (A) versus attended (B) 150 ms 0.75 135

V1 (macaque) Spontaneous (A) versus evoked (B) activity 100 ms 0.63 48

V1 (macaque) Non-adapted (A) versus adapted (A) responses 1.86 s 0.78† 136

V1 (macaque) Spontaneous (A) versus stimulation of the non-classical surround (B) 600 ms 0.85 137

V1 (macaque) Anesthetized (A) versus awake (B) 500 ms 0.14 10

V1 (macaque) Attended with drug application‡ (A) versus attended without drug (B) 300 ms 0.60, 0.4, 1.8 138

V1 (mouse) Low (A) versus high (B) arousal 2 s, 150 ms –0.22, 0.8 139,140

V1 (mouse) Stationary (A) versus locomotion (B) 100 ms 0.45 141

A1 (macaque) Passive (A) versus detection task (B) Not given 0.5§ 142

PFC (rhesus) Untrained (A) versus trained (B) 100 ms 0.5 143

MSTd (macaque) Untrained (A) versus trained (B) 100 ms 0.2|| 129

MT (rhesus) Task cooperation (A) versus competition (B) 650 ms (0.65,1.55)¶ 144

Piriform cortex (mouse) Pre-task (A) versus odor sniff (B) 120 ms 0.12 145

CLM (European starling) untrained (A) versus task-relevant (B) 565 ms (0.35, 1.65)# 146

Area 17 (cat) Perpendicular (A) versus aligned (B) surround grating 1 ms 0.8** 147

V1 (cat) Flashed stimuli (A) versus drifting grating (B) 100 ms 0.5 45

Intracellularly recorded membrane potentials

V1 (cat) Spontaneous (A) versus evoked (B) activity 0–10 Hz†† 0.75 148

Barrel cortex (mouse) Quiet wakefulness (A) versus active whisking (B) 2 ms 0.5 149
V1 (macaque) Spontaneous (A) versus evoked (B) activity 0.5–4 Hz§§ 0.5 150

We denote the two states with A and B, and the correlations measured in each state by ρA and ρB with ρA > ρB unless otherwise noted. The reported ρA/ρB values  
are approximate.
*Neuron pairs were grouped according to their task tuning similarity (TTS). Neuron pairs with TTS > 1 show an attention-mediated decrease in ρ, whereas pairs with TTS < −1 show 
an increase. †Restricted to neuron pairs with ρA > 0. ‡Three different drugs were applied to recorded neurons during a cued spatial attention task: dl-2-amino-5-phosphonopentanoic 
acid (AP5), 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and an NMDA receptor agonist; relative correlations are listed in that order. §Restricted to neurons with similar tuning. 
||Trained and untrained correlations are obtained from separate animals. ¶Task specifics placed neuron pairs to have either a cooperative relation to one another, or a competitive 
one. Neuron pairs were grouped according to the difference in their preferred direction of motion (PD), and competition decreased ρ for neuron pairs with PD < 135°, whereas it in-
creased ρ for pairs with PD > 135°. #Neuron pairs with signal correlation > 0.4 show a relative modulation of 0.65, whereas pairs with a signal correlation < 0.4 show a modulation 
of −0.65. **Given that firing rate changes were negligible, the measures were computed only from Cov (y1, y2) . ††Computed from the integrated spectral coherence between simul-
taneously recorded membrane potentials. §§Computed from the integrated spectral coherence between simultaneously recorded membrane potential and nearby local field potential.
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Figure 1 Schematic illustration of correlation 
transfer in networks of spiking neurons.  
We consider a pair of unconnected neurons 
(black triangles) that receive input from a 
presynaptic population of excitatory neurons 
(red triangles) and inhibitory neurons  
(blue circles). Covariability, Cov P P1 2,( ) ,  
in the presynaptic inputs, P1 and P2, to the 
postsynaptic pair is a result of a combination 
of shared anatomical projections leading to 
a shared input (overlap between P1 and P2) 
and correlations between the activity of the 
presynaptic populations. This presynaptic 
activity along with internal synaptic and cellular fluctuations, Ni, determine the postsynaptic currents, xi (i = 1, 2), in each of the two postsynaptic cells. 
Finally, the nonlinear spike generation mechanism translates these postsynaptic currents into the output spike trains, y1 and y2.

We next explore each of these modulatory terms in our  
feedforward network.

Three mechanisms of correlation modulation
There are several distinct ways to model a state change in a network.  
For example, neuromodulation through cholinergic and monoamin-
ergic pathways can have diverse effects on the cellular and synaptic  
properties in a network55. Alternatively, the dynamics of large-scale 
neural activity, as measured by electroencephalogram (EEG) and  
local field potential (LFP) recordings, differ between two neural states41. 
This can be modeled by changing the statistics of a global input to the 
network9–11,56.

In our framework, a presynaptic pool of excitatory and inhibitory 
neurons project to a representative neuron pair (Fig. 2). We model 
the shift from state A to state B as an increase in a static external drive 
to the presynaptic neuron population (Fig. 2a,b,e,f,j). This modeling 
choice causes changes in both the firing rate and correlations of the 
postsynaptic pair and can be loosely interpreted as capturing a wide 
array of neuromodulation schemes. We examine this general model 
of modulation (see Supplementary Mathematical Note for a descrip-
tion of the model) in three examples, each highlighting a different 
mechanism of correlation modulation.

Modulating presynaptic correlations
We start by analyzing the effect of changes in the correlations in the 
pool of presynaptic neurons. Here, as in other examples, the target 
pair of neurons receive correlated excitatory (E) and correlated inhibi-
tory (I) inputs via an overlapping set of projections from the presy-
naptic pool. In the present case we also include direct connections 
from excitatory to inhibitory neurons within the presynaptic pool 
itself. These connections can correlate the inhibitory activity received 
by one neuron in the pair with the excitatory activity received by 
the other neuron. The covariance of the total presynaptic activity, 

ˆ ˆ ˆI P E Ii i i= + , is computed as 

ˆ , ˆ , ˆ ˆ , ˆ ˆ , ˆ ˆE Cov P P Cov E E Cov I I Cov E I Cov I1 2 1 2 1 2 1 2 1( ) ( ) ( ) ( )= + + + ,, Ê2( )  

In state A, both excitatory and inhibitory presynaptic pools are 
weakly driven, resulting in low firing rates in the presynaptic popu-
lations and subsequently low firing rates of the postsynaptic neuron 
pair. The low rates in the presynaptic populations allow the spike 
threshold nonlinearity of the presynaptic cells to suppress neural 
transfer (the response gain L of the presynaptic populations is small). 
This compromises the presynaptic inhibitory pool’s response to pro-
jections from the excitatory presynaptic population. In particular, the 
low firing rates in the inhibitory pool imply that the inhibitory pool 

(3)(3)

transfers poorly the excitatory input fluctuations to the postsynaptic 
neuron pair. This results in approximately uncorrelated outputs of 
the excitatory and inhibitory pool, ̂ ˆ , ˆECov E Ii j( ) ≈ 0 (Fig. 2c). In this case, 
ρA is primarily a result of overlapping projections with ̂ ˆ , ˆECov E E1 2 0( ) >   
and ̂ ˆ , ˆI Cov I I1 2 0( ) > .

In state B, the presynaptic pool of neurons fires at a higher rate, 
increasing the net input to the postsynaptic pair, yielding a higher 
postsynaptic firing rate compared to state A (Fig. 2d). Furthermore, 
given that the drive to the inhibitory pool in state B is larger than in 
state A, the spiking nonlinearity of the inhibitory neurons does not 
compromise their response to the projections from the excitatory 
pool. Thus, the activity of the presynaptic inhibition is correlated with 
that of the presynaptic excitation. However, given that inhibition is 
hyperpolarizing, whereas excitation is depolarizing, the projections 
from the excitatory pool to one postsynaptic neuron are anticorre-
lated with the inhibitory projections to the other postsynaptic neu-
ron. In the end, ̂ ˆ , ˆECov E Ii j( ) < 0 (Fig. 2c), and this negative covariability  
partially cancels the positive covariability due to overlapping projections.  
This has the effect of reducing overall input correlations, so that 
r rp
B

p
A/ <1 . This leads to a reduction in output correlations (Fig. 2d)  

with r rB A/ <1  (via equation (2)). In this example, the linear transfer 
function remained approximately constant between the two states  
(L LA B≈ ) and we did not model private fluctuations (R RA B= = 0).

Excitatory and inhibitory currents are widely reported to be strongly 
correlated with one another57–59. In our model, such correlations 
are a result of feedforward excitatory and the associated disynaptic 
inhibitory pathways, a canonical circuit in the brain60. The functional 
consequences of this type of connectivity were first investigated from 
trial-averaged single neuron activity, with delayed inhibition creat-
ing a ‘window of opportunity’ for neural responses21,61–63. Recent 
studies have investigated the influence of this circuit structure on 
correlations between excitation and inhibition and the covariability 
of population responses. In the whisker barrel cortex of rodents, this 
circuit structure supports an active decorrelation of the spiking activ-
ity between excitatory and inhibitory neurons when measured in the 
stimulus evoked state64,65. A functionally similar feedforward circuit 
in the electrosensory system of weakly electric fish drives a decor-
related state when stimuli are spatially broad as opposed to spatially 
compact66,67. The example presented above is based on the models 
developed in those studies.

Renart, de la Rocha and colleagues initially studied the cancelation 
of overall input current covariability by anti-correlated excitatory and 
inhibitory inputs to neuron pairs32. However, they considered the case 
of recurrently coupled cortical networks, as opposed to the feedforward 
structure analyzed above. They showed that, in balanced networks  
of neurons68, the large sources of correlation resulting from shared 
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Figure 2 Three mechanisms for correlation 
modulation. (a) The presynaptic excitatory (E) 
population (red) and the inhibitory population 
(blue) both project to the postsynaptic neuron 
pair. In state A the presynaptic populations are 
weakly driven, with a slight asymmetry favoring 
the E population. (b) In contrast, both presynaptic 
E and I populations are driven strongly in state B.  
(c) The increase in presynaptic rate uncovers 
an anticorrelation between the E and I currents, 
ultimately decorrelating the overall synaptic 
inputs to the postsynaptic pair. (d) The result 
of the modulation from state A to B is to both 
increase the postsynaptic firing rate (green) 
and decrease spike count correlation (black). 
(e) The synapses linking presynaptic activity 
to postsynaptic current are probabilistic, with 
activity-dependent reliability of vesicle release 
(we show only the E population for schematic 
brevity). In state A, the presynaptic populations 
are weakly driven and the number of vesicles 
released per presynaptic spike, and their 
reliability, is high. (f) In contrast, in state B, the 
presynaptic population fires at a higher rate, 
resulting in less reliable synaptic transmission.  
(g) The decrease in synaptic reliability from state 
A to B increases the synaptic noise-to-signal ratio, 
1 + R. (h) The transition from state A to B has the effect of both increasing the postsynaptic firing rate (green) and decreasing the spike count correlation (black).  
(i) The presynaptic E and I populations project balanced, conductance based inputs to the postsynaptic pair. In state A, the firing rates of the presynaptic 
populations are low, and the overall synaptic fluctuations are small. (j) In contrast, in state B the presynaptic rates are higher, resulting in larger fluctuations 
in the input to the postsynaptic pair. (k) The increase in conductance-based fluctuations between state A and B reduces the spike response gain (L). (l) The 
transition from state A to B increases the postsynaptic firing rate (green) and decreases the spike count correlation (black).
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activity results in increased depression of synaptic transfer as a result 
of vesicle depletion. The probabilistic nature of vesicle recovery  
increases fluctuations in the synaptic current, so that relative  
synaptic noise, RB, is larger than in state A (Fig. 2g). Given that vesicle 
recovery is independent across synapses, such increased variability 
dilutes input correlations, ρB. This results in a modulation of output 
spiking correlations with r rB A<  (Fig. 2h).

Variability resulting from internal release and recovery dynamics in 
individual synapses is well documented53,76. Previous studies focused 
on the effect of such synaptic variability on the information transmis-
sion across a synapse75,77. Here we follow our past study78 and show 
how input correlations are diluted by synaptic variability in a firing 
rate dependent manner (also see ref. 79).

Synaptic variability is not the only cause of correlation dilution. 
Alternative mechanisms only need two features. First, the variability 
must be independent across neurons, so that Cov x xˆ ˆ,1 2( ) is unaffected 
by changes in state. Second, the variability must be activity dependent  
so that R changes with the state80,81. A multitude of biophysical  
mechanisms satisfy these requirements, including fast membrane 
potential fluctuations resulting from stochastic openings and closings 
of ion channels52,81, action potential threshold fluctuations resulting 
from finite-sized populations of axonal sodium channels82, and slow 
fluctuations in the cellular excitability of neurons83.

Modulating neural transfer
In the previous examples, the intensity of background synaptic fluc-
tuations changed the input statistics. We next show how it can also 
influence output correlations by changing the response gain (L) of a 
neuron. In our example, the drive from the presynaptic populations 
is balanced, meaning that both excitation and inhibition increase 
with the modulatory input (Fig. 2i,j). We chose parameters so that 
the total mean presynaptic input to the target pair is approximately  

projections in and outside the circuit were robustly and fully cancelled, 
stabilizing an asynchronous network state. Conditions under which 
such cancellation occurs have been clarified in further studies of recur-
rently coupled networks of model spiking neurons69,70. Modulation of 
correlations is difficult to study in these cases, mainly because correla-
tions are very small (on the order of the inverse of the network size). 
We will revisit correlation modulation in recurrent networks later.

In sum, the circuit mechanisms that determine presynaptic covaria-
bility are diverse, and a complete treatment is beyond the scope of this 
review. Nevertheless, in many cases a cancellation between various 
sources of opposing pre-synaptic correlations is a key component.

Modulating postsynaptic noise
To demonstrate the influence of private noise on correlation trans-
fer, we consider a model in which synaptic release is random. Every 
presynaptic spike releases a random number of synaptic vesicles to 
the postsynaptic neuron53. This is a result of both the nature of vesicle 
release and the fact that vesicles are replenished at random times. 
Vesicle recovery dynamics result in activity-dependent changes in the 
synaptic current’s mean and variability. This type of synaptic dynam-
ics is standard in models of short-term synaptic depression and has 
been widely used in past studies71–75.

We again consider the response of our model neuron pair in two 
states. In state A, the modulatory drive is weak and presynaptic popu-
lations fire at a low rate. In this case, the variability in the postsynaptic 
current, Var(N), is primarily a result of probabilistic vesicle release, 
as vesicle uptake almost always happens before the next spike arrival. 
Thus the relative synaptic noise, R Var N Var PA A A= ( / () ), is small 
(Fig. 2g). As a result, the output correlation, ρA, is only weakly diluted 
by synaptic noise.

In contrast, the larger modulatory drive in state B results in higher 
presynaptic and postsynaptic firing rates (Fig. 2h). Higher postsynaptic  
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state independent (through a cancelation of excitation and inhibition 
currents), but the overall variability of the synaptic input increases 
with the modulatory drive so that Var P Var PB A( ) > ( ) . Furthermore, 
the modulation is such that despite the increase in variance the presy-
naptic correlations remained fixed, that is r rP

B
P
A= . Finally, we neglect 

synaptic variability, so that R RA B= = 0. Thus, any change in output 
correlation, ρ, cannot be due to a change in input correlation, ρx.

Modeling work84–87, dynamic-clamp slice experiments88,89 and in 
vivo whole-cell recording90 have all demonstrated that increases in 
conductance-based input fluctuations lower L. Indeed, in our model, 
given that synaptic fluctuations are larger in state B than in state A, 
it follows that LB < LA (Fig. 2k). Thus, despite the increase in firing 
rate between state A and B (Fig. 2l), and the absence of changes in the 
input correlations, ρA = ρB , we nevertheless observe ρB < ρA (Fig. 2l). 
The reduction of L by increased synaptic activity is well studied88, and 
the subsequent decrease in output correlations under this modulation 
scheme has been previously noted89.

Calculating the response gain, L, and determining its effect on the 
collective behavior of neuronal populations has a long history50,51,91. In 
particular, the example of a pair of uncoupled neurons driven by par-
tially correlated inputs has been extensively studied. Formally, the non-
linear transfer between continuous input and spike response ensures that  
ρ < ρx

37,39,92–94, yet the influence of the nonlinearity can be controlled by 
several factors. In many neuron models, L increases with the firing rate 
of a neuron, resulting in a relationship between firing rates and ρ37,38,95. 
This prediction has been verified in a variety of experimental stud-
ies10,25,95,96, and firing rate is often a core determinant of output correla-
tion45. However, in general, output spiking correlations and firing rate do 
not have a prescribed relation, as our examples illustrate (Fig. 2d,h,l).

Neural excitability can shape how input correlations are transferred 
to output correlations, with neural integrators favoring spike count 
correlations measured over long timescales93, whereas resonator and 
phasic membrane dynamics show enhanced short timescale syn-
chrony97–100. Subthreshold cellular dynamics, such as spike-frequency 
adaptation101 or fast membrane tracking of slow synaptic inputs92, 
also shape L and hence the transfer of correlation. Increased cellular 
heterogeneity between the postsynaptic neuron pair typically reduces 
ρ38,102, particularly when measured over short timescales38,103,104. 
These studies all explicitly considered the case of correlation transfer 
for a neuron pair; however, the cellular and synaptic mechanisms that 
determine the response gain of a neuron have been a long-standing 
topic of interest105. Our theory suggests that all of these gain control 
mechanisms will also influence correlation transfer.

Distinguishing between the mechanisms
These three examples demonstrate how distinct physiological mecha-
nisms impact both firing rates and pairwise correlations. We have 
chosen model parameters so that the changes in firing rate and cor-
relations are nearly identical in all three cases (Fig. 2d,h,l). This illus-
trates an inherent difficulty in using changes in output statistics to 
infer the biophysical mechanisms that have caused them.

One way to distinguish the mechanisms underlying correlation modu-
lation is to consider spiking correlations ρ as a function of the time win-
dow (T) over which they are computed, as different mechanism modulate 

correlations on different timescales78,89,101. In general, ρ increases with 
the time window106, as in the case of the feedforward model with non-
plastic synapses (Fig. 3a,c). However, synapses with short-term depres-
sion have long timescale vesicle uptake dynamics (~ 400 ms), attenuating 
low frequency pre- to postsynaptic transfer. Consequently, broadband 
presynaptic activity is not correlated with postsynaptic responses over 
long timescales, and thus ρ is reduced for T > 400 s (Fig. 3b). Although 
measuring ρ as a function of T can help to distinguish some mechanisms 
from others, it does not provide a perfect diagnostic. Indeed, some quali-
tatively distinct mechanisms may only show quantitative differences in 
the timescale dependence of ρ (Fig. 3a,c).

Another way to distinguish the mechanisms is to recall that ρ is 
defined as a ratio 

r = ( )
( )

= ( )
( )

Cov n n
Var n

CoF n n
F n

1 2 1 2, ,

In the second equality we used the co-Fano factor93,  
CoF n n Cov n n n1 2 1 2, , /( ) = ( ) , and the Fano factor, F n Var n n( ) = ( )/  
(〈 〉n  is the mean spike count). A decrease in ρ between state A and B 
may be a result of either a larger decrease in CoF n n1 2,( ) than F n( ) or 
a larger increase in F n( ) than CoF n n1 2,( ). The cancelation of presyn-
aptic covariability through feedforward inhibition or an increase in 
variability through probabilistic vesicle release both lead to a reduc-
tion in ρ, as in the first case (Fig. 3d,e,g,h). In contrast, larger overall 
variability with increased background fluctuations coupled with a 
reduced gain leads to a reduction in ρ, as in the second case (Fig. 3f,i).  
However, as with timescales, separating modulations of ρ into modu-
lations of spike count Fano and co-Fano factors can only give partial 
information about underlying biophysical mechanisms.

It is possible to indirectly measure the stimulus-response gain L 
of a neuron by ranging over a stimulus parameter. If the stimulus 
dependence and the sources of input variability are known (or can be 
approximated) then one can account for changes in ρ by changes in 
L66. Manipulations of a neural circuit by pharmacological or optoge-
netic means can give further insights into how the organization of 
presynaptic correlations, ρp, or postsynaptic variability, R, contributes 
to state- dependent changes in ρ (see below).
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The most direct method to characterize the mechanisms responsible 
for state-dependent changes in correlation remains to use whole-cell 
recordings of membrane potential voltage fluctuations. Whole-cell 
recordings give information about both the synaptic inputs and spike 
outputs, allowing us to measure input correlations,Cov x x1 2,( ), inter-
nal fluctuations, R, and response gain, L, directly. Although in vivo 
whole-cell recording is challenging, there are several studies where 
pairwise correlations have been modulated and simultaneous mem-
brane potentials, or a membrane potential and local field potential 
have been recorded (Table 1). Studies of this type continue to be 
well suited to uncover the physiological basis of state-dependent  
correlation modulation.

Correlation modulation in recurrent networks
Thus far, we have explored correlation modulation in a simple feed-
forward circuit (Figs. 1 and 2). However, a primary characteristic 
of cortical networks is recurrent connectivity between neurons. 
Several groups have analyzed various models of recurrent networks 
of excitatory and inhibitory neurons107–109, and have provided key 
insights into the mechanisms that shape spike train correlations. 
For instance, networks with rapid, but delayed, recurrent inhibition  
produce fast-timescale correlated activity in the γ frequency range 
(30–70 Hz)50,110,111, but often show negligible correlations on slow 
timescales. Networks with weak or balanced coupling produce  
slow-timescale correlated activity whose magnitude scales inversely 
with system size, becoming exceedingly small in networks with  
thousands of neurons32,34,35,69,112. However, we are far from a  
complete understanding of self-generated correlated activity in  
recurrently networks of spiking neurons.

Clustered feedforward113, clustered recurrent114–116 and spatially 
distributed network architectures47,117,118 can all produce correlated 
activity between spiking neurons. In such networks, only neurons that 
belong to the same cluster or are close to one another are strongly cor-
related. Indeed, experiments show that noise correlations are large for 
neuron pairs that are reciprocally connected119 (same putative clus-
ter), similarly tuned or are nearby in space to one another48. However, 
the correlation between neuron pairs that fall outside these categories 
are also, on average, positive48.

Parallel recordings from neural populations show that network-
wide correlations can be largely explained by a one dimensional source 
of shared fluctuations, often treated as a latent variable in statistical 
approaches9–11,56,120. The origin of this source is not known. A straight-
forward (albeit phenomenological) way to model these dynamics is to 
drive a network of spiking neurons with a spatially coherent input that 
represents an external source of fluctuations28,56,94,121–123. Using this 
strategy, we can study correlation modulation in recurrent networks.

We consider a network of model excitatory (E) and inhibitory (I) 
spiking neurons with dense, recurrent connections between them. 
Weak feedforward input fluctuations, F(t), are shared by all neu-
rons (providing feedforward covariability CovF), alongside private 
fluctuations specific to each neuron in the network (Fig. 4a). The 
shared fluctuations are the largest source of network covariability in 
the model. In addition, we assume that there is a modulatory input 
similar to that of our previous models (Fig. 2) that depolarizes all 
neurons (different magnitude for E and I neurons). This modulatory 
input does not affect the external fluctuations F(t).

In response to the modulation, E neurons have a higher firing rate 
in state B than state A (Fig. 4b,e). In both states, the shared fluctua-
tions produce substantial variability in the instantaneous population 
firing rates (Fig. 4b). If the strength of shared input fluctuations is 
small compared with private fluctuations, then the linear response 

framework assumed in equation (2) is valid28,66,112,121,122,124. In this 
case, the intuition developed from our feedforward analysis will 
apply to a representative pair of neurons selected from the network. 
However, to understand the modulation of neural correlations, ρ, we 
must understand the combined modulations of the presynaptic input 
correlations, the transfer of presynaptic activity to synaptic current x 
and the gain of the postsynaptic response to those currents, L.

The nonlinearity of the transfer between synaptic input and spike 
response allows the gain L to be state dependent. In our model, we 
have that LA < LB (Fig. 4c). This differs from our previous analysis 
(Fig. 2k), as the network model has current-based synapses, whereas 
the feedforward case has conductance-based synapses, mimicking a 
high-conductance state89. With current-based synapses and moderate 
firing rates, an increase in firing rate results in an increase in L, which 
is supported both by in vitro37,105 and in vivo20 recordings. Thus, in our 
model, it is expected that the modulation will produce LB/LA > 1.

Any pair of neurons in our network is correlated through the shared 
fluctuations F(t) via two pathways: the direct feedforward component 
that provides input with covariance CovF between neurons, and the 
indirect pathway via recurrent excitatory and inhibitory projections 
between neurons in the network that also receive F(t). To simplify 
the exposition, we consider the joint common recurrent input R(t) = 
E(t) + I(t). The full covariance of the presynaptic input to a neuron 
pair then decomposes as 

Cov P P Cov Cov CovF R FR1 2 2,( ) = + +

Here CovR is the covariability resulting from common recurrent 
input to the neuron pair, whereas CovFR is the interaction between the 
feedforward and recurrent pathways. This decomposition is similar 
to feedforward case shown in equation (3). Although the feedforward 
input F(t) is state invariant, the recurrent activity R(t) changes with 
state. In our model, the inhibitory pathway is dominant, making 
CovFR < 0 because dynamic recurrent inhibition acts to partially can-
cel the feedforward drive69,121. The modulatory input enhances this 
cancellation so that Cov Cov Cov CovR FR R FR

A A B B+ > +2 2 , ultimately yield-
ing Cov P P Cov P PA B

1 2 1 2, ,( ) > ( ) (Fig. 4d).
The combined effect of the modulation is to produce two opposing 

manipulations of correlation transfer. An increase in response gain 
(LB/LA > 1) occurs in tandem with a decorrelation of the presynap-
tic input (Cov P P Cov P P1 2 1 2 1, / ,( ) ( ) <B A ). Our theory in equation (2) 
suggests that the response gain modulation will produce an increase 
in correlation in state B, that is ρB/ρA > 1, whereas the presynaptic  
correlation modulation leads to decrease, ρB/ρA < 1. We chose a mod-
ulation so that the latter effect dominates, and the spike correlation is 
reduced in state B (Fig. 4e). In general, modulatory inputs result in 
state changes in multiple stages of correlation transfer.

As in the feedforward networks, it is difficult to use spike train data 
alone to dissect the individual contributions of gain and presynaptic 
correlation modulations in a recurrent network. Further probing of 
the network can, however, give insight into the mechanisms of cor-
relation modulation. To illustrate, we model an experiment in which 
light is used to activate interneurons expressing halorhodopsin in 
a cortical network (Fig. 4f). We assume that light hyperpolarizes a 
fraction (50%) of the I cells in our model. Removing a large fraction 
of recurrent inhibition changes state-dependent modulations in two 
important ways. First, the increase in firing rates in going from state A 
to B is much larger (Fig. 4g). Second, spike correlations now increase 
with the state modulation (Fig. 4f).

With weaker inhibition, the cancellation of feedforward correla-
tions CovF through CovFR is attenuated. Thus, when halorhodopsin is  
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activated, the decorrelation in neural activity through recurrent 
inhibition is compromised. Furthermore, the increase in firing rate 
with decreased inhibition allows L to increase to a larger extent as 
the network transitions from state A to B. The combination of 
these effects leads to an increase in ρ with the state change when 
inhibition is reduced. Had recurrent inhibition not been a primary 
component of the mechanism underlying the state-dependent modu-
lation in the control case, then we would not expect to observe these  
qualitative changes.

This example shows how contemporary circuit manipulation tech-
niques can be used to test concrete predictions about state-dependent  
correlation changes in recurrent networks. We have confined our analysis 
to networks with weak coupling that receive external sources of fluctua-
tions34,35,66,69,121,122. In this case, linear response techniques are valid. 
The network simply transforms global input fluctuations into network-
wide spiking correlations. However, when coupling is stronger the net-
work can generate globally coherent activity50,110,111 and strong125 or 
slow115,126 fluctuations. The complete analysis of such dynamics involves 
the nonlinear network properties, and hence the factorization in equation 
(2) is not applicable. Such behavior is beyond the scope of this review.

Conclusion
Here we present a general framework for analyzing the physiologi-
cal mechanisms underlying the modulations of neuronal correla-
tions. We demonstrate our theory using several examples; however, 
the list of mechanisms that we considered was not exhaustive. The 
large number of factors that modulate intrinsic cellular properties, as 
well as synaptic excitation and inhibition, suggest that many distinct 
mechanisms control neuronal correlation. Our theoretical approach 
allows for an easier navigation of this large space, and the develop-
ment of a mechanistic understanding of state-dependent modulation 
of neuronal activity.

Unraveling the mechanics of correlation modulation in vivo will 
require a concerted experimental effort. We noted that whole-cell 
recordings will give invaluable data to validate the aspects of cer-
tain mechanisms over alternative ones. In addition, the combination 
of genetic specification127 and targeted optogentic manipulation of 
neural circuits128 promises to provide some fundamental insights. 
Finally, analysis of population-wide recordings describes  
how pair-wise correlations are distributed across large groups  
of neurons9–11,56,120. Extending our theory to networks of  
neurons is straightforward34,121,122. However, understanding how  

the dimensionality of population wide input correlation is rep-
resented by the spike responses of interconnected neurons is an  
open challenge.

The changes in correlated activity that we describe may have a 
number of consequences for neural coding. Theoretical26,123 and 
experimental96,129,130 studies have shown that changes in correla-
tions can increase the accuracy with which stimulus can be decoded 
from the population response. Furthermore, increased synchrony 
has also been shown to precede behaviorally relevant events131. 
However, recent work has exposed that it is the degree of overlap 
between the structure of population noise correlations and popula-
tion stimulus tuning that ultimately identifies the correlations that 
limit information transfer28. This implies that conclusions about 
the effect of noise correlations on neural coding should be made 
with care.

We have come a long way in characterizing the mechanics under-
lying the responses of single neurons. Understanding circuit and  
cellular modulations of the collective activity of neural populations 
will be an essential step toward understanding the brain.

A Supplementary Methods Checklist is available.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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