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Optimal routing to cerebellum-like 
structures

Samuel P. Muscinelli    1 , Mark J. Wagner    2 & Ashok Litwin-Kumar    1 

The vast expansion from mossy fibers to cerebellar granule cells (GrC) 
produces a neural representation that supports functions including 
associative and internal model learning. This motif is shared by other 
cerebellum-like structures and has inspired numerous theoretical models. 
Less attention has been paid to structures immediately presynaptic to 
GrC layers, whose architecture can be described as a ‘bottleneck’ and 
whose function is not understood. We therefore develop a theory of 
cerebellum-like structures in conjunction with their afferent pathways 
that predicts the role of the pontine relay to cerebellum and the 
glomerular organization of the insect antennal lobe. We highlight a new 
computational distinction between clustered and distributed neuronal 
representations that is reflected in the anatomy of these two brain 
structures. Our theory also reconciles recent observations of correlated 
GrC activity with theories of nonlinear mixing. More generally, it shows 
that structured compression followed by random expansion is an efficient 
architecture for flexible computation.

In the cerebral cortex, multiple densely connected, recurrent networks 
process input to form sensory representations. Theoretical models 
and studies of artificial neural networks have shown that such architec-
tures are capable of extracting features from structured input spaces 
relevant for the production of complex behaviors1. In contrast, the 
vertebrate cerebellum and cerebellum-like structures, including the 
insect mushroom body, the electrosensory lobe of the electric fish, 
and the mammalian dorsal cochlear nucleus, operate on very different 
architectural principles2. In these areas, sensorimotor inputs are routed 
in a largely feedforward manner to a sparsely connected granule cell 
(GrC) layer, whose neurons lack lateral recurrent interactions. These 
features suggest that such areas exploit a different strategy than the 
cerebral cortex to form their neural representations.

Many theories have focused on the computational role of the 
GrC representation in the cerebellum and cerebellum-like systems, 
providing explanations for both the large expansion onto the GrC 
layer3,4 and their small number of incoming connections (in-degree)5,6. 
However, these theories have assumed that inputs are independent, 
neglecting the upstream areas that construct them. As we show, this 
assumption severely underestimates the learning capabilities of such 

systems for structured inputs. Regions presynaptic to GrC layers 
have an architecture that can be described as a ‘bottleneck.’ In the 
mammalian cerebellum, inputs to GrC originating from the cerebral 
cortex arrive primarily via the pontine nuclei in the brainstem, which 
compress the cortical representation7. In the insect olfactory system, 
about 50 classes of olfactory projection neurons in the antennal lobe 
route input from thousands of olfactory sensory neurons (OSNs) to 
roughly 2,000 Kenyon cells in the mushroom body—the analogs of 
cerebellar GrC. Other cerebellum-like structures exhibit a similar bot-
tleneck architecture, suggesting that this motif plays a key role in the 
construction of cerebellar representations2. We hypothesized that 
these specialized regions process inputs to facilitate downstream 
learning, thus overcoming limitations due to input correlations and 
task-irrelevant activity.

Some of the bottleneck regions upstream of GrC layers have 
been studied in isolation from their downstream targets. Numerous 
studies have focused on the function of the insect antennal lobe and 
the olfactory bulb—an analogous structure in mammals. Some have 
proposed that its main function is to denoise OSN signals8,9, while 
others have argued for whitening the statistics of these responses10,11.  
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The activity of the expansion layer is

m = Θ( Jc − θ), (3)

where J represents connections from the compression to expansion 
layer, Θ is the Heaviside step function and θ represents the firing thresh-
olds of the expansion layer neurons. To mimic the random and sparse 
connectivity of the expansion in cerebellum-like structures, we assume 
that J is a sparse random matrix with K nonzero elements per row, rep-
resenting K connections onto each expansion layer neuron (Methods).

In our model, the network learns a mapping from patterns in a 
D-dimensional task subspace of the input layer activity to the target 
activation of a readout of the expansion layer, with D ≪ N. This contrasts 
with previous work4,5 that has typically assumed high-dimensional, 
random and uncorrelated input patterns. The task subspace represents 
the portion of the input space where inputs relevant to the task tend to 
lie and reflects the fact that neural computations are often performed 
in low-dimensional subspaces of the full activity space22. For example, 
OSNs of the same type respond similarly, thus defining a subspace in the 
space of all possible receptor firing rates. In addition to task-relevant 
activity, the input layer also includes task-irrelevant activity, which 
may lie both within and outside the task subspace.

The pontine nuclei upstream of cerebellar GrC have received less 
attention. Recent experiments suggest that the pontine nuclei not only 
relay the cortical representation but also integrate and reshape it12. 
We show that the functional role of these pre-expansion bottlenecks 
is best understood in conjunction with the computations performed 
by the downstream GrC layer.

Using a combination of simulations, analytical calculations, and 
data analysis, we develop a general theory of cerebellum-like structures 
and their afferent pathways. We propose that the function of bottleneck 
regions presynaptic to granule-like layers can be understood from the 
twofold goal of minimizing noise and increasing the dimension of the 
representation of task-relevant inputs, and we demonstrate how these 
can be attained using biologically plausible network architectures. 
When applied to the insect olfactory system, our theory shows that 
the convergence of sensory neurons onto glomeruli with lateral inhibi-
tory interactions optimally compresses an input representation with 
a clustered covariance structure. The same objective, applied to the 
corticocerebellar pathway, shows that feedforward excitatory projec-
tions to the pontine nuclei optimally compress a distributed cortical 
representation of sensorimotor information. Furthermore, the theory 
suggests that low-dimensional representations in cerebellar GrC are 
a consequence of an optimal compression of low-dimensional task 
variables13. More generally, our analysis reveals principles that relate 
statistical properties of a neural representation to architectures that 
optimally transform the representation to facilitate learning.

Results
The pathways to cerebellum-like structures, such as the mushroom 
body in the insect olfactory system (Fig. 1a) and the mammalian cerebel-
lum itself (Fig. 1b), are characterized by an initial compression, in which 
the number of neurons is reduced, followed by an expansion. We model 
this ‘bottleneck’ motif as a three-layer feedforward neural network  
(Fig. 1c; Methods). Information flows from N input layer neurons to M 
GrC via a ‘compression layer’ of Nc neurons. We use x, c and m to indicate 
the activity of the input, compression and expansion layer, respectively.

While the pathways to cerebellum-like structures share this bot-
tleneck architecture, the details of their microcircuitry differ. In the 
olfactory system of Drosophila (Fig. 1a) tens of olfactory receptor 
neurons expressing the same receptor project to an individual glo-
merulus in the antennal lobe14, which typically contains two projec-
tion neurons15,16. In contrast, the corticocerebellar pathway (Fig. 1b) 
exhibits a less structured and less pronounced compression, with the 
ratio of the number of incoming fibers from the cerebral cortex to 
the number of neurons in the pontine nuclei estimated to be between 
two and ten7. Furthermore, while the pontine nuclei seem to have no 
lateral excitation and little-to-no lateral inhibition7, in the antennal 
lobe local neurons mediate effectively recurrent interactions among 
glomeruli17,18 (Fig. 1c).

In contrast to neurons in expansion layers, which typically emit 
sparse bursts of action potentials19,20, neurons in compression layers 
typically have higher firing rates12,21. For this reason, in our model we 
consider either linear or rectified linear neurons for the compression 
layer, while for most of our results we use binary neurons to model the 
expansion layer (Methods). For a linear, feedforward compression, the 
activity of compression layer neurons is

c = GFFx, (1)

where GFF represents feedforward connections from the input to com-
pression layer. We also model recurrent connections within the com-
pression layer with a matrix Grec. In this case, compression layer activity 
evolves according to linear dynamics with a steady-state response to 
an input x given by (Methods)

c = (I − Grec)−1GFFx. (2)
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Fig. 1 | Similar routing architecture to expanded representations. a, Schematic 
of the architecture of the insect olfactory system. Colors indicate OSNs in the 
antenna and glomeruli in the antennal lobe corresponding to specific olfactory 
receptor types. b, Schematic of the corticopontocerebellar pathway. c, Diagrams 
of neural network models of the insect olfactory system (left) and corticocerebellar 
pathway (right). The insect olfactory system is characterized by structured 
convergence to a compression layer that exhibits recurrent interactions among 
compression layer neurons. The corticopontine compression is less pronounced 
and the pontine nuclei have little-to-no recurrent connections. d, Example of 
clustered and distributed input representations. A smooth trajectory z in a two-
dimensional task space (center) is embedded in an input representation of six 
neurons. Left, examples of input neuron responses in a clustered representation 
(each row is a neuron). Dotted line separates the two clusters. Right, examples of 
input neuron responses in a distributed representation.
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We consider two classes of input representations, correspond-
ing to different organizations of selectivities of input neurons to the 
task variables. In a clustered representation, input neurons belong to 
distinct groups, each of which is selective to a specific task variable  
(Fig. 1d, left). Such a representation can arise from a ‘labeled line’ wiring 
organization and leads to high within-group correlations. In contrast, 
in a distributed representation, each neuron is tuned to different linear 
combinations of multiple task variables (Fig. 1d, right). Our central 
contribution is a theory that relates these two classes of input rep-
resentation to predictions about the compression architecture that 
optimizes downstream learning by the expansion layer.

Selectivity to task-relevant dimensions determines learning 
performance
To investigate the properties of this compression architecture, we 
begin with a standard benchmark: the ability of a readout of the expan-
sion layer representation (for example, a Purkinje cell in the cerebellar 
cortex) to learn a categorization task using Hebbian plasticity. In such 
a task, P input layer patterns are randomly associated with positive or 
negative labels (which could represent positive and negative valences 
associated to different conditioned stimuli4,5). We compared the per-
formance of a network without a compression layer, in which expan-
sion layer neurons randomly sample input layer neurons (single-step 
expansion), with two networks with compression, specifically networks 
with either random or learned compression weights. Learned compres-
sion weights are trained using error backpropagation23 (Methods). 
There is a substantial performance improvement from learning the 
compression weights, even though the subsequent expansion is fixed 
and random (Fig. 2a). However, the network with random compression 
performs worse than the network without compression (Fig. 2a). These 
results suggest that compression can be highly beneficial, but only if 
the compression weights are appropriately tuned. Furthermore, the 
benefit of compression is absent when the task-relevant representa-
tion is high-dimensional (D = N) and unstructured, as considered in 
previous theories4,5 (Extended Data Fig. 1b).

We developed a theory to determine how compression connectiv-
ity shapes the expansion layer representation and affects task perfor-
mance. The theory shows that a structured compression layer increases 
performance both by increasing the dimension of the expansion layer 
representation and by decreasing the noise, compared with random 

compression (Fig. 2b; Methods). Furthermore, it demonstrates that, 
for a linear compression layer, learning performance is maximized 
when compression layer neurons extract the task-relevant principal 
components (PCs) of the input representation (Methods). Beyond 
tuning to task-relevant inputs, compression layer neurons could adjust 
their gains to amplify subleading PCs, thereby increasing dimension. 
Consistent with this, a network in which all task-relevant PCs are equally 
strong in the compression layer (whitening compression) performs 
slightly better than networks whose compression weights are trained 
with backpropagation (Fig. 2a). However, a flexible biological imple-
mentation of whitening compression may require more complex 
machinery than tuning to task-relevant PCs without whitening, such 
as lateral inhibition or intrinsic plasticity at the compression layer. 
Furthermore, we find a trade-off between maximizing dimension by 
whitening and denoising: amplification of subleading PCs also ampli-
fies noise (Methods), and whitening ceases to be the best strategy 
above a certain noise intensity (Fig. 2c). We refer to the network that 
optimizes the trade-off between dimension and noise as an optimal 
compression network.

Optimal compression for clustered and distributed 
representations
Because optimal compression reflects the statistics of the input, its 
properties differ substantially for clustered and distributed input rep-
resentations. For a clustered representation, task-relevant PCs cor-
respond to groups of similarly tuned neurons, whereas for a distributed 
representation they correspond to patterns of activity across the input 
layer (Fig. 3a,b). Selectivity of the steady-state compression layer neu-
ron responses to task-relevant inputs requires that the rows of the 
matrix (I − Grec)−1GFF span the task subspace (equation (2); Methods). 
We study the case in which GFF contains only nonnegative elements, 
representing excitatory feedforward connections onto compression 
layer neurons (Fig. 1c).

When the input representation is clustered and correlations across 
clusters are present, we show that both feedforward and recurrent 
processing are required to achieve this objective. In this scenario, the 
task-relevant input covariance matrix is a block matrix, with strong 
within-block correlations (Fig. 3c, top). The optimal compression 
matrix can be factored into a product of GFF, a Nc × N nonnegative block 
matrix that represents convergence of input clusters onto compression 
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Fig. 2 | Selectivity to task-relevant dimensions determines learning 
performance. a, Fraction of errors of a Hebbian classifier on a random 
classification task (Methods). Learned compression indicates the performance 
when training via gradient descent has converged (Extended Data Fig. 1a). 
For each network, performance is averaged across ten noise realizations. 
P values and t-statistics (two-sided Welch’s t-tests): random versus single-step 
expansion, t = 6.4, P = 10–5; single-step expansion versus learned compression, 
t = 8.5, p = 3.5 × 10–6; learned versus whitening compression, t = 2.6, P = 0.018. 
Parameters: p = 1 (decay speed of task-relevant dimension variances), 
N = 500, Nc = D = P = 50, M = 2,000, K = 4, f = 0.1, σ = 0.1. Box plots show variability 
across network initializations, with the boundary extending from the first to 
the third quartile of the data. The whiskers extend from the box by 1.5 times 

the interquartile range. The horizontal line indicates the median. b, Dimension 
(top) and noise (bottom) for one example realization of random, learned and 
whitening compression strategies, as in a. Bar colors are matched to network 
diagram on the left. c, Fraction of errors of a Hebbian classifier on a random 
classification task, as a function of the input noise s.d. σ. Dots indicate simulation 
results (averaged across 40 simulations), lines indicate theoretical predictions. 
Dotted vertical lines indicate the range of σ for which the performance of the 
compression strategy in which the compression layer units are tuned to task-
relevant PCs (PC-aligned) and that of whitening compression are not significantly 
different (two-sided Welch’s t-test, n = 40, criterion: P < 0.05). The value of p was 
increased to p = 1.5 in this panel to make this trade-off more apparent. Other 
parameters: N = 500, Nc = D = P = 50, M = 2,000, K = 4, f = 0.1.
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layer neurons, and a Nc × Nc matrix Wopt that represents interactions 
within the compression layer, that is c = WoptGFFx (Fig. 3c, center and 
bottom; Methods). Comparing this expression with equation (2), the 
recurrent interactions are related to Wopt via

(I − Grec)−1 = Wopt. (4)

When the responses of input neurons belonging to different clusters 
are uncorrelated, Wopt = I and Grec = 0, meaning recurrence is absent. 
When different clusters are correlated, however, decorrelation via the 
lateral interactions summarized in Wopt is needed.

We next consider distributed input representations (Fig. 3d, top). 
In this case, the optimal compression matrix will include positive and 
negative entries, corresponding to excitatory and inhibitory connec-
tions (Fig. 3d, center). We asked whether optimal compression could 
be well approximated using only excitatory feedforward compression 
weights. We used gradient descent to adjust the weights to maximize 
dimension and minimize noise at the compression layer (Fig. 3d, bot-
tom, Methods). Surprisingly, when the input representation is distrib-
uted and redundant (N ≫ D), purely excitatory connections lead to a 
compression layer dimension comparable to optimal compression  
(Fig. 3f, top). This is because, in this scenario, there are, with high prob-
ability, input neurons that encode each possible combination of task 
variables. Thus, even when connections are constrained to be excita-
tory, compression layer neurons can represent each of these combina-
tions, successfully reconstructing the task subspace. In agreement with 
this intuition, the learned compression matrix is sparse, despite not 
having introduced any explicit sparsity bias (Extended Data Fig. 2a). 
Furthermore, the distribution of the number of outgoing connections 
per input layer neuron is broader than expected by chance (Extended 
Data Fig. 2b), suggesting that some input neurons are more likely to be 
compressed than others.

While purely excitatory compression is less effective in filtering 
out input noise, this limitation can be compensated by increasing input 
redundancy (that is, making N/D larger, see Fig. 3f, bottom). Thus, even 
in the absence of lateral inhibition, excitatory compression weights are 
sufficient to maximize classification performance at the readout for 
large N/D (Extended Data Fig. 2c,d). This result stands in contrast to our 
previous conclusion for systems with clustered input representations, 
for which decorrelation via lateral inhibition is necessary and for which 
increasing input redundancy does not increase the number of task 
variable combinations encoded (Fig. 3e and Extended Data Fig. 2e,f)

In total, we find that recurrence is necessary to decorrelate clus-
tered input representations, while it is dispensable for distributed 
input representations as long as input redundancy is sufficiently high. 
In subsequent sections, we relate this distinction to differences in 
architecture between the antennal lobe and pontine nuclei (Fig. 1c).

Compression of clustered representations in the insect 
olfactory system
In the insect olfactory system, OSNs that express the same receptor 
send excitatory projections to the same olfactory glomerulus in the 
antennal lobe14 (Fig. 4a). In our model, this corresponds to a clustered 
input representation with one cluster per receptor type. Each OSN 
cluster converges to specific compression layer neurons in antennal 
lobe glomeruli—the next stage of odor processing. Within the antennal 
lobe, local neurons mediate lateral interactions between glomeruli, 
which are predominantly inhibitory17,18. Mushroom body Kenyon cells 
randomly mix projections from the glomeruli, thereby forming an 
expanded representation of olfactory information24,25. This architecture 
is consistent with our theoretical results, which require both excitatory, 
convergent compression connectivity and recurrent interactions in 
the compression layer (Fig. 3c,e).

We hypothesized that evolutionary and developmental processes 
optimize the connectivity of the antennal lobe to facilitate a readout 
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M = 2,000, K = 4, f = 0.1, p = 1, σ = 0.1.

http://www.nature.com/natureneuroscience


Nature Neuroscience | Volume 26 | September 2023 | 1630–1641 1634

Article https://doi.org/10.1038/s41593-023-01403-7

of the Kenyon cell representation, and asked whether the relation 
between input statistics and recurrent connectivity in the compression 
layer given by equation (4) is compatible with the lateral inhibitory 
interactions in the antennal lobe. We reanalyzed experimental record-
ings of single odor receptors to different odorants26 and found that 
the correlations among OSN types are more positive than expected 
by chance (Extended Data Fig. 3a–c). We show analytically that when 
these correlations are uniformly positive, global lateral inhibition 
across antennal lobe glomeruli in the model is sufficient for optimal 
compression (Methods). Consistent with this and with studies that 
propose interglomerular interactions perform pattern decorrela-
tion and normalization11,27, global inhibition considerably increases 
the dimension of the antennal lobe representation when using the 
recorded responses as input to our model (Fig. 4b), leading to improved 
performance in an odor classification task (Fig. 4c, left). However, cor-
relations are not uniformly positive, suggesting that further improve-
ment could be achieved by fine-tuning the connectivity to the detailed 
structure of the input covariance matrix. To test this, we used gradient 
descent to train Grec, which was constrained to be nonpositive. Strik-
ingly, the resulting networks performed as well as optimal compres-
sion, and significantly better than networks with global inhibition only  
(Fig. 4c, right). Future studies should analyze whether the specific struc-
ture of lateral connectivity in the antennal lobe is consistent with this  
role (Discussion).

In contrast to networks with specific convergence of OSN types 
onto glomeruli, a model in which OSNs are mixed randomly in the 
antennal lobe performs poorly (Fig. 4c, left). It may seem counterintui-
tive that such convergence is needed for optimal performance when 
antennal lobe responses are subsequently randomly mixed by Kenyon 
cells. Our theory illustrates that this difference is a consequence of 
both denoising and maximization of dimension. When input neuron 
responses are noisy, pooling neurons belonging to the same cluster 
reduces noise by a factor N/D compared with random compression 
(Methods). Even in the absence of noise, the dimension of the com-
pression layer is higher for optimal compression than for random 
compression, because the latter introduces random distortions of 
the input layer representation. This can only be avoided by ensuring 
that weights onto compression layer neurons are orthogonal, a more 
stringent requirement that cannot be assured by independent random 
sampling of inputs (Methods). In fact, a block-structured GFF is the only 
possible nonnegative weight matrix that has this property. We also 
found an additional, more subtle benefit of glomerular convergence 

when considering sparse expansion layer connectivity (Extended Data 
Fig. 3d–g).

The factorization of the optimal compression connectivity into 
sparse feedforward convergence and dense recurrent interactions also 
requires fewer resources than a single feedforward compression 
matrix. In general, the purely feedforward strategy requires N × Nc 
connections to be specified, while the factorized one requires N + N2c 
connections if recurrent interactions are monosynaptic. For the anten-
nal lobe, the number of OSNs is N ≃ 1,200, the number of uniglomerular 
projection neurons is Nc ≃ 150 and interactions between glomeruli are 
mediated by a population of ≃ 200 local neurons28. This corresponds 
to 180,000 versus 61,200 connections for the purely feedforward and 
factorized strategies, respectively.

In total, our theory reveals that the glomerular organization 
of the antennal lobe optimizes the Kenyon cell representation for 
downstream learning. Moreover, for realistic input statistics, optimal 
compression is well approximated by a combination of feedforward 
excitation and lateral inhibition within the compression layer, consist-
ent with antennal lobe anatomy.

Compression of distributed representations in the 
corticocerebellar pathway
In the corticocerebellar pathway, inputs from motor cortex are relayed 
to cerebellar GrC via a compressed representation in the pontine nuclei 
(Fig. 5a). The motor cortex representation is distributed across neu-
rons22,29, unlike the clustered representation of inputs to the antennal 
lobe. As we have shown earlier, optimal compression of distributed 
representations can be well approximated using only excitatory weights 
(Fig. 3f). This constraint seems to be required, because corticopontine 
projections are excitatory and the pontine nuclei lack strong inhibition. 
In rodents, recurrent inhibition seems to be completely absent, whereas 
for primates and larger mammals, it seems to play only a limited role7.

So far, we have focused on optimizing performance for a classifica-
tion task. Some of the tasks that the cerebellum is involved in, such as 
eye-blink conditioning, may be reasonably interpreted in this way, but 
others may not. An influential hypothesis is that the cerebellum pre-
dicts the sensory consequences of motor commands, implementing 
a so-called forward model30. In this view, the cerebellum integrates 
representations of the current motor command and sensory state to 
estimate future sensory states. We cast the problem of learning a for-
ward model as a nonlinear regression task, assigning each point in the 
task subspace (representing the combination of motor command u 
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whiskers of the violin plots indicate the full range of the data. Note that the value 
of D (and consequently Nc and P) is set to match the experimental data available, 
while σ is increased to reflect the high degree of noise in the OSNs. P values and 
t-statistics (two-sided Welch’s t-tests): excitatory compression with versus 
without global inhibition, t = 4.2, P = 2.85 × 10−5; global inhibition versus optimal 
inhibition, t = 4.3, P = 2.02 × 10−5. NS, not significant.
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and sensory state s) a predicted sensory state s′ = s + f(s,u) (Fig. 5b; 
Methods). In this scenario, the goal of model Purkinje cells (PkCs) is to 
learn the nonlinear function f(s, u). We considered a planar arm model, 
with two joints at which torques can be applied (Fig. 5c). To introduce 
task-irrelevant activity consistent with experimental observations31,32, 
we added low-dimensional noise acting on distributed modes to the 
cortical representation (Methods). Both optimal compression and 
purely excitatory compression lead to substantially better perfor-
mance than random compression when learning a forward model for 
this system, showing that the benefits we have described are not spe-
cific to discrete classification tasks (Fig. 5d).

Our results reveal that the distributed nature of the cortical repre-
sentation yields an optimal compression architecture compatible with 
the lack of inhibition in the corticopontine pathway. This is a qualita-
tively different conclusion than for systems with clustered inputs, for 
which excitation alone is insufficient, and applies when the readout is 
trained to perform either classification or continuous control tasks.

Optimal in-degree of learned corticopontine compression
Activity in motor cortex is task-dependent and exhibits steady drift in 
the neurons representing stable latent dynamics29,33. Unlike the genet-
ically determined, clustered representation of OSNs, such activity 
thus has a covariance structure that changes over time. We therefore 
extended our theory from the case of fixed compression weights to 
learning of compression weights through experience-dependent syn-
aptic plasticity.

Hebbian plasticity is a natural candidate for learning compression 
weights, because it enables downstream neurons to extract leading 
PCs of upstream population activity34,35. In many models, recurrent 
inhibitory interactions among downstream neurons are introduced 
to ensure that each neuron extracts a different PC. Due to the lack of 
inhibition in the pontine nuclei, we asked whether sparsity of compres-
sion connectivity instead can introduce the necessary diversity among 
pontine neuron afferents to achieve high performance.

We assumed that each compression layer neuron has in-degree L 
(that is, receives L connections from the input layer), corresponding to 
L nonzero elements for each row of GFF in random locations. When these 
weights are set using Hebbian plasticity (Methods), the performance 
of a classifier trained on the expansion layer representation depends 
nonmonotonically on L. Performance is poor for small L, increases 
quickly and finally decays slowly as L becomes large (Fig. 6a, left). 
Our theory demonstrates that this behavior is a result of the trade-off 

between denoising and dimension. Noise strength at the expansion 
layer decays with L, thanks to a more accurate estimation of leading 
PCs (Fig. 6a, top right). On the other hand, dimension decreases with 
L as compression layer neurons tend to extract similar components 
(Fig. 6a, bottom right). The value L⋆ that yields the best performance 
lies between 10 and 100 incoming inputs. L⋆ is affected only weakly by 
architectural parameters such as the number of input neurons N, com-
pression layer neurons Nc, or expansion layer neurons M (Extended Data 
Fig. 4b–d). Instead, it depends on features of the input representation, 
with stronger noise favoring large in-degrees, and higher-dimensional 
representations leading to an increasingly pronounced optimum  
(Fig. 6b,c). In contrast to optimal compression, which requires only 
Nc = D compression layer neurons, Hebbian compression requires 
larger Nc (Extended Data Fig. 4a). This suggests that the smaller com-
pression ratio of N/Nc ≈ 2–10 for the corticopontine pathway, compared 
with N/Nc ≈ 24 for the antennal lobe, may arise due to the requirements 
of Hebbian plasticity.

Thus, in the absence of recurrent inhibition in the compression 
layer, an intermediate in-degree maximizes performance. This is true 
not only for random classification, but also for nonlinear regression 
(Extended Data Fig. 5a), suggesting that the trade-off between denois-
ing and dimension is present across tasks. Given the low-dimensional 
representations observed in recordings of motor cortex22, we pre-
dict that the optimal in-degree L⋆ of rodent pontine neurons should 
be between 10 and 100. To our knowledge, this in-degree has not 
been measured, but the large dendritic arbor of these neurons36 sug-
gests that it is much larger than the in-degree of GrC, consistent with  
our theory.

We also tested whether further improvement could be achieved 
when recurrent inhibition is present, using a recent model that imple-
ments a combination of Hebbian and anti-Hebbian plasticity35,37. After 
learning, the compression layer exhibit a richer representation of task 
variables than without recurrent inhibition (Extended Data Fig. 4e,f). 
We therefore predict that species with more recurrent inhibition in 
the pontine nuclei may exhibit larger excitatory pontine in-degree.

Feedback from the deep cerebellar nuclei improves selection 
of task-relevant dimensions
One limitation of tuning the compression weights using Hebbian 
plasticity is that, being an unsupervised method, Hebbian plasticity 
extracts leading PCs, but not necessarily task-relevant ones. This is 
not a problem when noise is random and high-dimensional, since in 
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Fig. 5 | Compression of distributed representations in the corticocerebellar 
pathway. a, Schematic of the corticopontocerebellar pathway, highlighting the 
feedforward compression connectivity. b, Illustration of a continuously varying 
target. The high-dimensional cortical representation consists of orthogonal 
task-relevant and task-irrelevant subspaces. The cerebellum learns to map 
cortical activity (dots) to an output (color code) via a smooth nonlinear function. 
c, Schematic of two-joint arm task. Given joint angles, angular velocities, and 
torques (D = 6) at t = 0, the system predicts the state of the arm at t = Δ. d, MSE for 
the two-joint arm task, plotted against the strength of task-irrelevant activity σ. 
Optimal and excitatory compression perform significantly better than random 

compression when σ ≥ 0.2 (P < 0.05, two-sided Welch’s t-test, n = 10). Optimal 
compression performs significantly better than purely excitatory compression 
only when task-irrelevant components are very strong (that is σ ≥ 1, two-sided 
Welch’s t-test, P < 0.05, n = 10). Low-dimensional task-irrelevant activity was 
generated as detailed in Methods, with Dn = 100 and pn = 1. Network parameters: 
N = 500, Nc = 100, M = 2,000, f = 0.3. Task parameters: Δ = 0.4 s, Ptrain = 10,000. The 
coding level was increased compared with the classification task to match the 
higher optimal coding level observed in regression tasks58. The solid lines and 
shaded areas indicate the mean and s.d. of the MSE across network realizations, 
respectively.
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this case the leading PCs are likely to be task-relevant. However, it can 
reduce performance when leading components are task-irrelevant31,32. 
The anatomy of the corticocerebellar system suggests a solution to this 
problem: in addition to cortical input, the pontine nuclei also receive 
feedback from the deep cerebellar nuclei (DCN)—the output structure 
of the cerebellum36 (Fig. 6d). Previous theories have largely ignored 
these connections. We provide a new interpretation of this motif and 
suggest that it provides a supervisory signal that aids the identification 
of task-relevant inputs.

To test this hypothesis, we extended our corticocerebellar model 
to include feedback from the network output to the compression layer, 
akin to the DCN-pontine projection. In the compression layer, this 
feedback is used solely as a supervisory signal for synaptic plasticity, 
that is, it is added as an input to the learning rule but does not affect the 
network dynamics (Methods). Both compression weights and readout 
weights are learned online using biologically plausible rules. Specifi-
cally, we augment Oja’s rule34 to include supervisory DCN feedback and 
show that such plasticity is biased towards components of the input 
that correlate with the target and are therefore likely task-relevant 
(Methods).

We tested this mechanism in the two-joint arm forward model task 
considered above. To model strong task-irrelevant activity, similar to 
Fig. 5f, we introduced low-dimensional noise acting on distributed 
modes with a decaying PC spectrum. When such noise is weak, Heb-
bian compression performs well, both with and without feedback 
(Fig. 6e). In contrast, when task-irrelevant components are stronger 
than task-relevant ones (Fig. 6e, inset), performance in the absence 
of feedback quickly degrades, as compression layer neurons learn to 
extract task-irrelevant components. Supervisory feedback alleviates 

this problem and improves performance (Fig. 6e, Extended Data  
Fig. 5b). This happens thanks to a rapid decrease of the error due to 
fast, online learning of the readout weights. Such relatively fast learn-
ing brings the network output close enough to the target to supervise 
learning of the compression weights (Extended Data Fig. 5c). In sum-
mary, our results support a new functional role for DCN projections to 
pontine neurons: enabling the extraction of task-relevant, but sublead-
ing, input components.

Hebbian compression can explain correlation and selectivity 
of GrC
Classic Marr–Albus theories of cerebellar cortex propose that the GrC 
representation should be as decorrelated and high-dimensional as pos-
sible, and that this is achieved by randomly mixing high-dimensional 
inputs4,38. Our results argue that, for behaviors that can be represented 
in terms of a small set of task variables, it is beneficial for a bottleneck 
layer to extract only these variables. Recent recordings have shown 
that cerebellar GrC in mice exhibit high selectivity to task variables 
and strongly correlated activity, both with each other and with corti-
cal neurons13, and this has been taken as evidence against Marr–Albus 
theories. We show that optimal compression in the corticopontine 
pathway provides an alternative explanation for these experimental 
findings that preserves mixing in the GrC layer.

We developed a model based on simultaneous two-photon cal-
cium recordings of layer-5 pyramidal cells in motor cortex and cer-
ebellar GrC13 (Fig. 7a). During recording sessions, mice performed a 
skilled forelimb task (Methods) that required them to move a joystick 
in a L-shaped trajectory, turning either to the left or right. We used 
recorded calcium traces of layer-5 pyramidal cells as inputs to the 
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Fig. 6 | Biologically plausible learned compression. a, Fraction of errors 
(left) of a Hebbian classifier reading out from the expansion layer for Hebbian 
compression, as a function of the compression layer in-degree L. Dashed 
horizontal lines indicate random and optimal compression. Right, dimension 
expansion (bottom) and noise contributions to the network performance (top), 
where Δm indicates the noise strength at the expansion layer (Methods). b, Same 
as a, left, but for different input noise strengths σ. c, Same as b, but for different 
input dimensions D. In a, b and c we used N = 500, Nc = 250, M = 1,000, D = P = 50, 
p = 0.1, f = 0.1 and σ = 0.5 unless otherwise stated. p was reduced to highlight the 
trade-off between denoising and dimension. d, Illustration of the DCN-pontine 
feedback (in red). PN, pontine nuclei. e, Feedback from DCN improves selection 

of task-relevant dimensions. MSE for the two-joint arm forward model task, as 
in Fig. 5c,d, versus strength of task-irrelevant dimensions σ (σ = 1 signifies that 
the magnitude of the leading task-irrelevant and task-relevant components are 
the same). Hebbian compression with DCN feedback performs significantly 
better than without for all values of σ (P < 0.05, two-sided Welch’s t-test, n = 10), 
particularly when σ > 1. Inset, variance explained by task-irrelevant components 
(violet), in decreasing order, for two example values of σ (green star and orange 
diamond). Gray dashed line indicates variance explained by the leading task-
relevant component. L = 50; other parameters same as Fig. 5d. In all panels, the 
solid lines and shaded areas indicate the mean and s.d. of the performance across 
network realizations, respectively.
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corticopontocerebellar model described above. In the model, cor-
ticopontine synapses undergo unsupervised learning via Hebbian 
plasticity. Similar to Wagner et al.13, we modeled unrecorded neurons 
by including an unobserved layer-5 population and a corresponding 
pontine subpopulation. The latter projects to both the observed GrC 
layer and to unobserved GrC not included in the model (Fig. 7b).

Since we do not have access to the unobserved population, we 
introduce two model parameters σuoS  and σuoN , which control the 
strength of task-relevant and task-irrelevant components of the unob-
served cortical population (Methods). We systematically varied both 
parameters and measured average correlations in the model, both 
among GrC and between granule and layer-5 cells. The model and data 
are compatible using both measures, provided that task-irrelevant 
activity in the unobserved cortical population is strong enough  
(Fig. 7c, left). Notably, a model with random, nonplastic compression 
weights is not compatible with the data and exhibits lower correlations 
even for very small σuoN  (Fig. 7c, right).

We also quantified the selectivity of model GrC subpopulations 
responsive to left and right turns of the joystick, or responsive to both 
directions, before and after the turn13 (Methods). When the parameters 
of the unobserved population were set so that correlations in the model 
fit those in the data, the model could also account for the observed 
selectivities (Fig. 7d). A model without Hebbian compression can also 
explain the selectivity profile, but only if task-irrelevant activity in the 
unobserved population is extremely weak.

Our analysis shows that the results of Wagner et al.13 are consistent 
with GrC responding to mixtures of mossy fiber activity. Due to Heb-
bian plasticity, pontine neurons in our model filter out task-irrelevant 
activity, becoming more selective to task variables and forming a 
lower-dimensional representation than would be expected from ran-
dom compression. This decrease in dimension is not detrimental, but 
rather a consequence of discarding high-dimensional, task-irrelevant 
activity and preserving task-relevant activity. Since the latter is 
low-dimensional, random mixing at the model GrC layer yields only a 
moderate dimensional expansion and high correlations. Altogether, 
our results show that structured compression and random mixing of 
low-dimensional task variables, consistent with our theory of optimal 
compression, can account for the statistics of recorded responses.

Bottleneck architecture is more efficient than a single-step 
expansion
Throughout, we have assumed that the expansion connectivity is 
random. Because optimal compression, as we have defined it so far, 
involves a linear transformation, it is possible to generate a network 
with a single-step expansion that is equivalent to a two-step optimal 
compression network (Fig. 8a). This would yield a nonrandom expan-
sion, with a synaptic weight matrix given by the product of the two-step 
compression and expansion weight matrices. What then is the advan-
tage of performing these operations in two distinct steps? The answer 
is a consequence of the sparsity of the expansion layer weights.
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Fig. 7 | Bottleneck model can explain correlations and selectivity of recorded 
GrC. a, Illustration of the experimental design of Wagner et al.13. Mice performed 
a forelimb control task (left) while layer-5 pyramidal neurons and cerebellar GrC 
were recorded simultaneously using two-photon calcium imaging (right). 
Reproduced with permission from Wagner et al.13. b, Schematic illustrating how 
the bottleneck model is extended to reproduce the data. The dashed line 
indicates little or no mixing in the corticopontine pathway, while the shaded 
areas indicate strong mixing in the pontocerebellar pathway. c, Layer-5–GrC 
(magenta) and GrC–GrC (cyan) correlations, both in the data (dashed lines) and 
in the model (solid lines), for Hebbian (left) and random (right) compression 
strategies. Mean correlations across neurons are averaged across animals and 
plotted against σuoN , the noise strength in the unobserved population. The 
colored shaded area indicates s.e.m., computed across animals. The gray shaded 
area indicates the region in which correlations in the model are not statistically 

different from those in the data for both areas (P > 0.05, two-sided Wilcoxon 
signed-rank test; n = 10). For this panel, the signal strength of the unobserved 
population is σuoS = 1. d, Average selectivity to left (L) and right (R) turns of the 
joystick, or to turns without direction preference (B), for GrC in the data (black), 
and models (Hebbian, blue; random, red). Selectivity is measured separately for 
the time window before (left) and after (right) the turn. Boxes indicate 25th and 
75th percentiles across mice, while whiskers indicate the full range of the mean 
selectivities across mice. Asterisks indicate cases in which model and data are not 
compatible, color-coded according to the compression type (criterion, P < 0.05; 
two-sided Wilcoxon signed-rank test; n = 10). The box boundary extends from the 
first to the third quartile of the data. The whiskers extend from the minimum to 
the maximum of the data. The horizontal line indicates the median. In d, σuoS = 1 
and σuoN = 0.7 for the Hebbian model and σuoN = 0.1 for the random model.  
For all panels, Nc = N/2, M = 10N, Nuo = 2N, f = 0.1, L = 15.
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For a single-step expansion to implement both optimal compres-
sion and dimensional expansion, neurons in the expansion layer must 
be equipped with a local decorrelation mechanism across their affer-
ent synapses (Fig. 8a, inset; Methods). However, due to their sparse 
connectivity, individual neurons receive input only from a subset of 

input neurons. Minimizing correlations within this subsampled rep-
resentation will not, in general, lead to decorrelation of the full repre-
sentation, since a whitening transformation requires knowledge of the 
global covariance structure. As a result, adding local decorrelation to a 
single-step expansion architecture does not yield a significant benefit 
if expansion layer neurons have small in-degrees and are not permitted 
to use nonlocal information (information about neurons to which they 
are not connected) to set synaptic weights (Fig. 8b).

If the expansion layer in-degree is increased, local decorrelation 
better approximates optimal compression (Fig. 8c). However, the total 
number of synapses necessary to implement this single-step architec-
ture is much higher than for the two-step architecture. The wiring cost 
of performing local decorrelation at the expansion layer is particularly 
high when considering parameters consistent with cerebellar cortex, 
M ≃ 200,000 and Nc ≃ 7,000 (Marr3; Fig. 8d,e). With local decorrelation 
at the compression layer, performance saturates when the compres-
sion in-degree L is around 30 (Fig. 8e, left), totaling slightly more than 
a million synapses. For a network without a compression layer and 
with expansion layer neurons that perform local decorrelation, the 
performance is much worse if the total number of synapses is equalized  
(Fig. 8d). To achieve the same performance as the two-step architec-
ture, the expansion in-degree would need to be between 10 and 20 
(extrapolating from Fig. 8e, right), totaling between 2 and 4 million 
synapses. We reach a similar conclusion when considering parameters 
consistent with the insect olfactory system (Extended Data Fig. 6).

So far, we have assumed that the responses of the compres-
sion layer neurons are linear, meaning that the dimension of the 
compressed representation cannot be larger than D. Introducing a 
nonlinearity at the compression layer increases the expansion layer 
dimension, potentially improving input discriminability (Extended 
Data Fig. 7; Methods). We therefore asked whether two layers of non-
linear neuronal responses can further improve performance. Surpris-
ingly, in our setting with nonlinear compression followed by random 
nonlinear expansion, we find that they cannot. This is because the 
compression nonlinearity amplifies noise, overwhelming the mod-
erate increase in dimension. The fact that responses in the antennal 
lobe and pontine nuclei are substantially denser than those of Kenyon 
cells or GrC is consistent with these neurons operating closer to a 
linear regime21. In total, our results show that a dedicated compres-
sion layer with approximately linear responses provides an efficient 
implementation of optimal compression, both in terms of number of 
synapses and wiring complexity.

Discussion
Our results demonstrate that specialized processing in ‘bottleneck’ 
structures presynaptic to granule-like expansion layers substantially 
improves the quality of expanded representations. This two-step archi-
tecture, with a structured bottleneck followed by a disordered expan-
sion, is also more efficient, in terms of total number of synapses, than 
a single-step expansion. The circuitry that optimizes performance 
depends on input statistics, with clustered and distributed input 
representations leading to different predictions about compression 
architecture.

Bottleneck architectures have been studied extensively in other 
contexts, such as compressed sensing39, efficient coding40–42 and 
autoencoders43,44. In some cases, the relation between input statistics 
and the compressed representation has been studied44,45. However, 
in the case of autoencoders and compressed sensing, the goal of the 
expansion layer is assumed to be input reconstruction, while for other 
theories only linear computation was considered45. In contrast, our 
study highlights the importance of upstream compression in light of 
downstream nonlinear computation by the expansion layer. Further-
more, by studying inputs that may be low-dimensional, we generalize 
previous approaches that consider only random high-dimensional 
inputs4,5, for which compression does not yield a benefit.
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Fig. 8 | Comparison between bottleneck architecture and single-step 
network. a, Single-step expansion (left) and optimal compression (right) 
architectures. Inset, illustration of local decorrelation at the expansion layer in 
the single-step expansion architecture. With sparse connectivity, each expansion 
layer neuron only has access to a subsampled version of the full input covariance 
matrix (three-by-three in the illustration). b, Fraction of errors (mean across 
100 network realizations) in a random classification task for different network 
architectures plotted against the network expansion ratio. Local decorrelation 
does not significantly improve performance for small expansion layer neuron 
in-degree (K = 4 shown; two-sided Welch’s t-test, n = 100). Shaded areas indicate 
s.d. across network realizations. c, Similar to b, but plotted against K. The local 
decorrelation model performs significantly worse than optimal compression 
until K = 350 (two-sided Welch’s t-test, P < 0.05, n = 100). In b and c, N = 500, 
Nc = D = 50, P = 50, M = 2,000, K = 4, f = 0.1, p = 1, and σ = 0.1, unless otherwise 
stated. d, Fraction of errors plotted against total number of synapses in the 
bottleneck architecture with local decorrelation at the compression layer 
(blue) and in a single-step expansion architecture with local decorrelation at the 
expansion layer (gray). Total synapse number was varied by changing K or L while 
keeping other parameters fixed. When the total number of synapses is 1 million, 
P < 10–10, two-sided Welch’s t-test, t-statistics = 15.468, n = 40. Parameters: 
N = 14,000, Nc = 7,000, D = P = 50, M = 200,000, f = 0.1, p = 1, σ = 0.1. e, Same as d, 
but plotted against the pontine in-degree L for the bottleneck architecture (left) 
and against the model GrC in-degree K for the single-step expansion architecture 
(right). In d and e, the solid lines and shaded regions indicate the mean and s.e.m. 
across network realizations, respectively.
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Other pathways to the cerebellum and other cerebellum-like 
structures
We focused on the corticopontocerebellar pathway and the insect olfac-
tory system as the statistics of their inputs are better understood, but 
other pathways to the cerebellum and cerebellum-like structures also 
exhibit bottleneck architectures. Another main source of input to the 
cerebellum is the spinocerebellar pathway, which carries propriocep-
tive input from the spinal cord46. In the dorsal spinocerebellar pathway, 
neurons in Clarke’s column relay lower limb proprioceptive inputs from 
muscle spindles and tendon organs to the cerebellum47. Such neurons 
exhibit little convergence as they receive excitatory input from a single 
nerve. Interestingly, they also receive inhibitory inputs from other 
muscles. These observations suggest that the inputs to relay nuclei in 
the spinal cord exhibit clustered representations, which, according to 
our theory, benefit from inhibition from other clusters. Characterizing 
input statistics of this ensemble of proprioceptive inputs to predict 
the optimal organization of spinocerebellar pathways is an interesting 
direction for future research.

The electrosensory lobe of the electric fish is a cerebellum-like 
structure that exhibits synaptic plasticity required for cancellation 
of self-generated electrical signals48. The nucleus praeeminentialis 
receives input from the midbrain and the cerebellum and projects 
solely to GrC in the electrosensory lobe2. Interestingly, the nucleus 
praeeminentialis also receives feedback from the output neurons of 
the electrosensory lobe, analogous to DCN-pontine feedback con-
nections49. This suggests that our hypothesized supervisory role of 
DCN-pontine feedback could be an instance of a more general motif 
across cerebellum-like structures.

Response properties of compression layer neurons
Whereas in previous work13 pontine neurons have been modeled as 
binary, here we consider linear neurons, which we argue is more consist-
ent with the graded firing rates they exhibit21. Indeed, pontine neurons 
have higher firing rates and denser responses than cerebellar GrC12,19. 
Similar arguments apply to the insect olfactory system when comparing 
projection neurons to Kenyon cells20. We tested that our results are con-
sistent when pontine neurons are modeled using a rectified-linear non-
linearity and showed that nonlinear compression layer responses do 
not improve performance. This contrasts with nonrandom expansion 
architectures, such as deep networks, which can benefit substantially 
from multiple nonlinear layers1, and reflects that a linear transformation 
is well-suited to maximize the performance of the subsequent random 
expansion. However, it is also possible that, for specific input statistics, 
nonlinear compression layer neurons lead to an improvement.

In our models, we have neglected intrinsic noise in compression 
layer neurons. Introducing such noise is mathematically equivalent to 
increasing the noise strength at the expansion layer (Methods), leaving 
our analysis of the biological architectures that realize optimal com-
pression unchanged. Furthermore, while the level of intrinsic noise for 
compression layer neurons in cerebellum-like structures is not known, 
noise at the input layer is likely to be a dominant source of variability. 
Insect OSN responses are strongly affected by the variability of bind-
ing of the odorant to the odor receptor9, which is largely independ-
ent across neurons. As we showed, compression onto the glomeruli 
reduces this type of noise by a factor N/D. In the corticocerebellar 
pathway, the main source of noise is likely task-irrelevant activity that 
is distributed across cortical neurons31,32.

At the population level, our theory predicts that compression lay-
ers should exhibit a larger proportion of task-relevant activity and more 
decorrelated representations. Previous studies have shown signatures 
of pattern decorrelation and normalization in the antennal lobe10,27. 
Recordings in the pontine nuclei are challenging and only a small 
number of neurons have been recorded simultaneously. Population 
recordings of these neurons could distinguish whitening compression, 
which predicts that the principal component analysis (PCA) spectrum 

of the pontine population decays more slowly than that of layer-5 
pyramidal cells, from nonwhitening compression.

Feedforward and lateral inhibition
The cholinergic projections of OSNs to the antennal lobe are excita-
tory50. We showed that, when the input representation is clustered and 
correlations between clusters exist, either disynaptic feedforward or 
lateral inhibition is necessary to maximize performance. In the anten-
nal lobe, both types of inhibition are present. However, disynaptic 
inhibition is believed to largely mediate interactions among different 
glomeruli10, suggesting that lateral inhibition dominates. We showed 
that global lateral inhibition is sufficient to effectively denoise and 
decorrelate OSNs whose response properties are constrained by 
experimental data26. An interesting future direction is to investigate 
whether the detailed pattern of response correlations across glomer-
uli is reflected in their lateral connections51. However, such a predic-
tion requires accurate estimation of this correlation pattern over the 
distribution of natural odor statistics, which may not be reflected in  
existing datasets.

In most mammalian brain areas, long-range projections are pre-
dominantly excitatory, and this is true of corticopontine projections 
from layer-5 pyramidal cells. While inhibitory disynaptic pathways 
to the pontine nuclei do exist7,12, our results show, surprisingly, that 
purely excitatory compression weights can perform near-optimally 
when the input representation is redundant and distributed, rather 
than clustered. However, lateral inhibition might play a role in learn-
ing, promoting competition to ensure heterogeneous responses even 
when compression layer neurons share many inputs35. While lateral 
inhibition is almost absent from the pontine nuclei in rodents, its 
prevalence increases in larger mammals, such as cats and primates7. 
In species where lateral inhibition is more abundant, pontine neurons 
may be more specifically tuned to task-relevant input dimensions and 
exhibit larger in-degrees.

Corticopontine learning and topographical organization of 
the pontine nuclei
Our theory highlights the importance of plasticity at corticopontine 
synapses, which permit pontine neurons to track slow changes of the 
task-relevant cortical input space. This could, for example, compensate 
for representational drift in motor cortex29,33. We also showed that such 
subspace selection can be further improved by supervisory feedback 
from the DCN, a mechanism which is supported by the presence of 
particularly strong feedback projections from the dentate nuclei52, 
an area which is also heavily pontine-recipient. Alternatively, these 
feedback connections could gate different pontine populations or 
modes, enabling fast contextual switching53. Another possibility is that 
part of the learning process that enables subspace selection is carried 
out by layer-5 pyramidal cells.

At a larger scale, the pontine nuclei exhibit a topographic organiza-
tion, perhaps genetically determined, that largely reflects the cortical 
organization54,55. For example, motor cortical neurons whose output 
controls different body parts project to distinct pontine regions. More-
over, there is evidence of convergence of motor and somatosensory 
cortical neurons coding for the same body part onto neighboring 
pontine regions56. It is therefore likely that both hard-coded connec-
tivity and experience-dependent plasticity control the compression 
statistics.

Random mixing and correlations in low-dimensional tasks
Our theory is consistent with data collected using simultaneous 
two-photon imaging from layer-5 pyramidal cells in motor cortex and 
cerebellar GrC13. We showed that the level of correlations and selectiv-
ity of GrC can be explained if corticopontine connections are tuned 
to task-relevant dimensions, but not if they are fixed and random. A 
previous theory proposed a model to account for this data in which, 
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during the course of learning, mixing in the GrC layer is reduced and 
a single mossy fiber input comes to dominate the response of each 
GrC13. Our model preserves mixing in GrC—a feature thought to be 
crucial for cerebellar computation3, and instead emphasizes the role 
of low-dimensional GrC representations when animals are engaged 
in behaviors with low-dimensional structure. Such an interpreta-
tion may generally account for recordings of GrC that exhibit low 
dimensionality and suggests the importance of complex behavioral 
tasks or multiple behaviors to probe the computations supported 
by these neurons57.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
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Methods
Network model
We model the input pathway to cerebellum-like structures as a 
three-layer feedforward neural network. The input layer activity x 
represents the task subspace (see below) and task-irrelevant activ-
ity. The representation x is sent to the compression layer via a 
compression matrix G ∈ ℳNc×N . We consider both linear compres-
sion layer neurons, for which c = Gx and rectified linear unit (ReLU) 
neurons, for which c = [Gx − θ]+, where the rectification is applied 
element-wise. The output of the compression layer is sent to the 
expansion layer via a matrix J ∈ ℳM×Nc , and we set m = ϕ(Jc – θ), 
once again applied element-wise. In our results, ϕ is a Heaviside 
threshold function, except when considering nonlinear regression 
and when reanalyzing the data from Wagner et al.13, for which we 
used a ReLU nonlinearity. The nonzero entries of the expansion 
matrix J are independent and identically distributed (i.i.d.) random 
variable, sampled from 𝒩𝒩 (0, 1/K), where K is the number of incoming 
connections onto an expansion layer neuron. The thresholds θ are 
chosen adaptively and independently for each neuron to obtain 
the desired coding level (fraction of active neurons) f or fc (ref. 4), 
for the expansion and compression layer, respectively. The expan-
sion representation m is read out via readout weights w, that is, the 
network output is ̂yμ = wT(m − f1), where 1 indicates the vector of all 
ones. The readout weights are set using a Hebbian rule (Hebbian 
classifier), unless stated otherwise, that is

w =
P
∑
μ=1

(mμ − f ⋅ 1)yμ, (5)

where yμ are the target labels.

Recurrent compression layer. Recurrent interactions in the compres-
sion layer can be modeled via the differential equation

τc ̇c = −c + Grecc + GFFx, (6)

where Grec is the matrix of recurrent interactions in the compression 
layer and GFF is the matrix of feedforward interactions from the input to 
the compression layer. We assume that τc is much smaller than the time-
scale at which the input varies, so that we can focus on the steady-state 
dynamics given by

c = Grecc + GFFx ⇒ c = (I − Grec)−1GFFx =∶ Geffx, (7)

where we defined the effective feedfor ward matrix as 
Geff ∶= (I − Grec)−1GFF . Therefore the compression matrix Geff can be 
thought as the effective steady-state compression matrix in the pres-
ence of recurrent interactions and linear neurons.

Single-step expansion network. To compare the performance of the 
bottleneck network with one without the compression layer, we also 
implement a single-step expansion network, in which the input layer 
x is directly expanded to the expansion layer m via a sparse expansion 
matrix J, that is, m = ϕ(Jx − θ). The matrix J ∈ ℳM×N  has K nonzero  
elements per row, with these entries sampled as for the bottleneck 
network.

Input representation
We model the input representation x as a linear mixture of task-
relevant and task-irrelevant activity (that is, noise). The task-rele-
vant variables are described by a D-dimensional representation z, 
and are encoded in the input layer via a matrix with orthonormal 
columns A. Similarly, the task-irrelevant activity is generated by 
embedding a Dn-dimensional, task-irrelevant representation zn  

in the input layer using a matrix with orthonormal columns An.  
The input representation is therefore given by

where σ is a scalar parameter controlling the noise strength, ATA = ID, 
and analogously for An. The columns of A can always be chosen to be 
orthonormal to each other, since we assume that N ≥ D. For this reason, 

we also assume that N ≥ Dn. The factors √
N
D

 and √
N
Dn

 ensure that input 

layer activity is of order 1. As we will describe in more detail, both x̄ and 
ξ are Gaussian vectors and uncorrelated with each other, therefore x 
is also Gaussian with covariance matrix Cx = N

D
AC zAT + σ2 Nn

Dn
AnC znATn .

Task-relevant representation. The task variables z in equation (8)  
consist of D-dimensional random Gaussian patterns, sampled from 
𝒩𝒩 (0,Λ) , where Λ is a D × D diagonal matrix with diagonal elements 
λ1, …, λD. The {λi} represent the task subspace PCA eigenvalues, and to 
control their decay speed we set λi = i–p and vary the parameter p.

The choice of the matrix A determines the quality of the input rep-
resentation. To model distributed input representations, we sample a 
random N × N orthogonal matrix ON from a Haar measure59 (the analog 
of uniform measure for matrix groups), and select the first D columns 
of ON to be the columns of A. To model clustered input representations, 
we split the N input neurons into D groups. For simplicity, we take these 
groups to be equally sized, that is each group consists of Ng neurons, 
but our results can be easily generalized to the case of groups with 
different sizes. To include correlations among neurons belonging to 
different clusters, we set A = BOD, where OD is a D × D orthogonal matrix 
sampled from a Haar measure. The elements of the matrix B are set as

Bij = {√
1/Ng if neuron i belongs to group j

0 otherwise
(9)

Task-irrelevant activity (noise). The task-irrelevant component ξ of 
the input representation in equation (8), that is, the input noise, was 
generated analogously to the task-relevant one, that is zn consisted of 
Dn-dimensional random Gaussian patterns, sampled from 𝒩𝒩 (0,Λn), 
where Λn is a diagonal matrix with elements λni = i

−pn, for i = 1, …, Dn. For 
most of our analyses, we considered high-dimensional isotropic noise, 
that is Dn = N, pn = 0 and An = IN. However, when analyzing the perfor-
mance on the forward model task (Fig. 5d and Fig. 6e), we also consid-
ered lower-dimensional, distributed noise, because task-irrelevant 
activity in motor cortex seems to be relatively low-dimensional31,32.  
In this case, we sampled An from the Haar measure, analogously to A 
for distributed task-relevant representations.

We also added noise at the expansion layer. The latter depended 
on the type of nonlinearity used at the expansion layer. For binary 
neurons, used for most of our results, we randomly flipped a fraction 
σm of the neurons for every pattern. For ReLU neurons, we added ran-
dom isotropic Gaussian noise with variance σ2m after the rectification, 
while keeping the final rate positive. Noise could also affect the com-
pression layer representation, but we can absorb this contribution into 
the noise at the expansion layer (as noise at the expansion layer 
increases monotonically with the noise at the compression layer;  
Supplementary Modeling Note).

Metrics of dimension and noise
To quantify the dimension of a representation, we use a measure based 
on its covariance structure5,60. For a representation x with covariance 
matrix Cx, which has eigenvalues λ1, …, λn, we define

dim(x) ∶= Tr(Cx)2

Tr ((Cx)2)
=
(∑iλi)

2

∑iλ
2
i

. (10)

x =√
N
DAz +√

N
Dn
σAnzn =∶ x + σξ, (8)
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In the absence of noise, and because of the orthonormality of the col-
umns of A, the nonzero eigenvalues of Cx are equal to λ1, …, λD, that is, 
the PCA eigenvalues of x are the same as those of z. Therefore, 
dim(x) = dim(z). This can also be seen by noting that the columns of A 
form an orthonormal set, that is ATA = I, and using the cyclic permuta-
tion invariance of the trace, for any representation z with covariance 
matrix Cz (possibly nondiagonal):

Tr (C x) = Tr (AC zAT) = N
DTr (A

TAC z) = N
DTr (C

z) , (11)

and analogously Tr ((Cx)2) = N 2

D2
Tr ((C z)2) . As a result, the factor N/D 

simplifies and the dimension remains unchanged.
To quantify noise strength, we follow previous work and con-

sider the Euclidean distance between a noiseless pattern x  and a 
noisy pattern x, specifically d(x,x) = ∑N

i=1 (xi − xi)
2

 (ref. 4). This dis-
tance is averaged over the input and noise distribution and normal-
ized by the average distance among pairs of noiseless input patterns, 
that is:

∆x =
⟨d(xμ,x μ)⟩μ,ξ
⟨d(x μ,x ν)⟩μ

, (12)

where μ denotes the average over the input distribution and ξ the aver-
age over the noise distribution. With this normalization, Δx = 1 if noisy 
patterns are, on average, as distant from their noiseless version as two 
different input patterns are with respect to each other. The definition 
of Δc and Δm for the noise strength at the compression and expansion 
layer is analogous to that in equation (12).

Random classification task
A random classification task is defined by first assigning binary labels 
yμ = ± 1 at random to patterns zμ, for μ = 1, …, P, in the task subspace. 
The network is required to learn these associations and generalize 
them to patterns that are corrupted by noise. When readout weights 
are learned using a Hebbian rule (equation (5)), the probability of  
a classification error can be expressed in terms of the signal-to- 
noise ratio (SNR) of the input received by the readout neuron, as 

P ( error ) ≃ 1
2
erfc (√

SNR
2
)  (ref. 4). Previous work5 has shown that the 

SNR can be expressed as

SNR ≃ dim(m̄)(1 − Δm)
2

P , (13)

where Δm is the noise strength at the expansion layer (analogous to 
equation (12); Methods), while dim(m̄)  is the noiseless dimension,  
that is, the dimension of the task-relevant expansion layer representa-
tion m̄ (analogous to equation (10); Methods). Since we always con-
sider the dimension of task-relevant representations, we lighten the 
notation by dropping the bar and writing dim(x), dim(c) , dim(m) ,  
for the task-relevant input, compression, and expansion layer, 
respectively.

Compression architectures
Here, we briefly describe the different types of compression that we 
considered in the main text. We note that, when compression is lin-
ear, multiplying any of the compression matrices below by an Nc × Nc 
orthogonal matrix has no effect on the dimension and noise strength 
of the compression layer. For the case of PC-aligned compression, 
however, a subtle advantage at the expansion layer is present when 
such additional rotation is absent (Extended Data Fig. 3d–g). In con-
trast, for nonlinear compression and Nc > D, the additional rotation is 
beneficial as it increases the dimension of the compression layer after 
the nonlinearity.

Random compression. We model random, unstructured compres-
sion by sampling the entries of the compression matrix G i.i.d. from a 
Gaussian distribution, that is

Grndij ∼ 𝒩𝒩 (0, 1N ) , (14)

where the scaling of the variance is chosen to obtain order 1 activity in 
the compression layer.

PC-aligned compression. For PC-aligned compression the rows of G 
are set equal to the task-relevant PCs of the input. Since the task-relevant 
variables are embedded in the input layer via the orthonormal columns 
of A, the latter are the task-relevant PCs. Therefore,

GPC ∶= √
D
NA

T. (15)

Once again, the scaling factor ensures that the activity of compression 
layer neurons are order 1. The above expression is valid when Nc = D. If 
Nc > D, we duplicate the rows of GPC, which results in a clustered  
representation at the compression layer. Note that with this type  
of compression, the task-relevant activity in the compression layer is  
decorrelated, because the task-relevant covariance matrix is given by 
C c = D

N
AC xAT = Cz , which is diagonal by construction.

Whitening compression. To obtain a whitened spectrum, the rows of 
GPC can be scaled in such a way that Cc = I. Since the eigenvalues of Cx are 
the same as the PCA eigenvalues of the task subspace representation 
z, this is accomplished when:

GW ∶= √
D
Ndiag (λ

−1/2
1 ,… , λ−1/2D )AT. (16)

Similar to PC-aligned compression, if Nc > D, we duplicate the rows 
of GW.

Optimal compression. We define the optimal compression matrix as 
either GPC or GW, depending on which leads to the best performance. 
For nearly all the regimes we consider, whitening leads to the best 
performance.

Optimization of compression weights via gradient descent. For  
Fig. 2a,b, Fig. 3e,f and Extended Data Fig. 7c we used gradient descent 
to optimize the compression weights. We trained compression weights 
using backpropagation under the assumption that readout weights are 
learned using the Hebbian rule (equation (5)). More precisely, for each 
epoch we sampled a random sparse expansion matrix J and B = 10 ran-
dom classification tasks, each consisting of P = D = 50 target patterns.

For Fig. 2a and Extended Data Fig. 7c, Hebbian readout weights 
are set independently for each task, after which the compression 
weights are updated in the direction that decreases the loss (binary 
cross-entropy) computed on noise-corrupted test patterns. The update 
step was performed using the Adam optimizer61, with a learning rate 
η = 10–4. To facilitate learning by gradient descent, we replaced Heavi-
side nonlinearities in the expansion layer with ReLU nonlinearities. 
Adaptive thresholds were set, as in the rest of the paper, to obtain the 
desired coding level f. We used the same setup to test the performance 
in the presence of nonlinearities in the compression layer. We intro-
duced ReLU nonlinearities in the compression layer in the same way 
as we did for the expansion layer, with a coding level fc = 0.3.

For Fig. 3e,f, the compression weights were adjusted to approxi-
mate optimal compression by simultaneously maximizing dimension 
and minimizing noise at the compression layer. To achieve this, we 
chose as the objective function the maximization of SNRc =

dim(c)(1−∆c)
2

P
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(analogous to equation (13) for the compression layer). At every epoch, 
excitatory weights were constrained to be nonnegative.

Hebbian compression. In Figs. 6 and 7, we considered biologically 
plausible learning of compression weights. In particular, we exploit 
the well known result that Hebbian plasticity leads to the postsynaptic 
neuron extracting the leading PC of its input34. In the presence of sparse 
compression connectivity, a compression layer neuron receives input 
from L input layer neurons. We call Si = {j1, …, jL} the set of indices of 
input layer neurons that project to neuron ci. The covariance Ccikl   
of such input is therefore a L × L matrix given by

Ccikl = C
x
jk jl

for jk, jl ∈ Si. (17)

The leading PC of the input to neuron ci is the (normalized) eigenvector 
of Ccikl  corresponding to its leading eigenvalue. Therefore, to mimic 
Hebbian plasticity in the presence of sparse connectivity, we set the 
ith row of G to the leading eigenvector of Ccikl. Notice that, for small L, 
the leading eigenvector of Ccikl  might be substantially different from the 
leading eigenvector of the full covariance of the input Cx. Therefore, 
sparse connectivity introduces diversity of tuning across compression 
layer neurons, at the cost of pushing the tuning vectors outside of the 
task subspace, resulting in stronger noise.

Derivation of optimal compression
A key result of our theory is that, when expansion weights are random, 
optimal compression requires compression layer neurons to be tuned 
to task-relevant input PCs. Furthermore, the gain of different compres-
sion layer neurons could be adjusted to further increase performance. 
However, to what degree it is convenient to do so depends on the input 
noise strength.

We start from the expression for the SNR of a Hebbian classifier 
(equation (13)), which is a proxy of classification performance on a 
random classification task4. To maximize the SNR, we would ideally 
maximize dim(m) while minimizing the noise Δm. We find that aligning 
the weights to the PCs favors both objectives, while performing addi-
tional whitening increases dimension but also noise. While perfor-
mance depends on dimension and noise at the expansion layer, in most 
cases the dimension and noise at the compression layer is sufficient 
to explain the resulting performance. This is because (1) noise at the 
expansion layer is a monotonic function of noise at the compression 
layer (Supplementary Modeling Note and Extended Data Fig. 8) and 
(2) dimension of the expansion layer depends on the dimension of the 
compression layer (Supplementary Modeling Note and Extended Data 
Fig. 8). However, dimension can also depend on the fine structure of 
the compression layer representation, in particular when the expan-
sion connectivity is sparse (Supplementary Modeling Note). Below, 
we show how the properties of compression weights determine dimen-
sion and noise at the compression layer, motivating our definition of 
optimal compression.

Effect of compression on dimension. Here we present analytical 
results on the dimension of the compression layer in the case of linear 
compression. By definition of the dimension (equation (10)), we need 
to compute:

dim(c) = Tr(Cccc)2

Tr((C c)2)
(18)

For random compression, it is convenient to reinterpret the trace as 
an average across compression layer neurons:

dim(c) =
Nc⟨C c

ii ⟩
2

⟨(C c
ii )
2⟩ + (Nc − 1)⟨(C c

ij )
2⟩
, (19)

where the average is intended over i and j. We now define G̃ ∶= GA, that 
is, the effective matrix transforming the task variables into the com-
pression layer representation (up to a factor √N/D, which is irrelevant 
for the dimension). Since the columns of A are orthonormal, the ele-
ments of G̃  are also normally distributed and independent, with  
mean zero and variance 1/N. We have that C c

ij = ∑D
k=1 G̃ikG̃jkλk . Approxi-

mating the average over i and j with the average over the distribution 
of G̃, we obtain the dimension of c:

dim(c) ≃
Nc
N2
Tr2(C z)

2
N2
Tr((C z)2)+ 1

N2
Tr2(C z)+ Nc−1

N2
Tr((C z)2)

= dim(z)
1+ dim(z)+1

Nc

.
(20)

Notice that dim(x) = dim(z) since we assume an orthonormal embed-
ding of the task subspace. Equation (20) shows that random compres-
sion always reduces dimension, only preserving it in the limit of many 
compression neurons, Nc ≫ dim(x). This is due to the distortion of the 
input layer representation introduced by the random compression 
weights4.

However, such distortion can be avoided by a choice of compres-
sion matrix that preserves the geometry of the input representation 
and its dimension (dim(c) = dim(x)). These compression matrices are 
characterized by orthonormal rows, a more stringent requirement that 
cannot be guaranteed by each compression layer neuron sampling its 
inputs independently. To see this, consider the traces appearing in the 
dimension expression (equation (18)), which can be written using the 
effective matrix G̃ introduced above:

Tr(C c) = Tr(GC xG T) = Tr(GC zGT) (21)

Tr((C c)2) = Tr (GC xG TGC xG T) = Tr (G̃C zG̃ TG̃C zG̃ T) . (22)

Thanks to the cyclic permutation invariance of the trace, computations 
of the traces in equations (21) and (22) above reduce to the computation 
of G̃ TG̃. In particular, if G̃ TG̃ = I , the traces will be unaffected by G̃ and 
dim(c) = dim(z). One situation in which this happens is when G satisfies 
two conditions: (1) the rows of G are orthonormal and (2) the columns 
of A are in the span of the rows of G (see Supplementary Modeling Note 
for the proof). We call such compression ‘orthonormal’ compression. 
Intuitively, the orthogonality of the rows of G avoids any distortion of 
the representation, whereas the columns of A need to be in the span of 
the rows of G to avoid that part of the task subspace being filtered out 
during compression.

PC-aligned compression (equation (15)) is a special case of 
orthonormal compression, in which the rows of G are aligned with 
the columns of A. If the expansion connectivity is dense, that is, J is a 
fully-connected matrix, such alignment will not lead to any improve-
ment compared with any other orthonormal compression. However, 
when the expansion connectivity is very sparse, PC-aligned compres-
sion leads to larger dimension at the expansion layer (Extended Data 
Fig. 3d–g). Since expansion connectivity in cerebellum-like structures 
is very sparse, we included the alignment with PCs as a feature of opti-
mal compression. In general, studying the dimension of the expansion 
layer representation in the sparse connectivity scenario analytically 
is challenging, and we therefore study it either numerically or using 
semi-analytical Monte Carlo integration.

Finally, compression can also increase dimension. This can occur 
for whitening compression (equation (16)), which equalizes the vari-
ances of different input PCs. Because we consider linear compression, 
the task-relevant dimension of the compression layer is bounded by 
D. This bound is attained by whitening compression, as by definition 
it results in Cc = I. In summary, the effect of compression on dimension 
can be: (1) beneficial, if dim(c) > dim(x) , for example for whitening 
compression, (2) neutral, if dim(c) = dim(x), that is for orthonormal 
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compression or (3) detrimental, if dim(c) < dim(x) , for example for 
random compression.

Effect of compression on noise. Input noise can be separated into task 
noise, which corrupts the input representation along the task subspace, 
and task-orthogonal noise, which lies in directions orthogonal to the 
task subspace. Compression cannot attenuate task noise without reduc-
ing the signal strength as well, nor can it attenuate expansion layer noise. 
However, it can filter out noise in task-orthogonal directions. The extent 
to which this happens depends on the alignment between the incoming 
weights onto compression and the task subspace, as we show below.

We start by computing the noise strength at the input layer. From 
equation (12), we see that to obtain the noise strength we need to com-
pute ⟨d(xμ,x μ)⟩μ,ξ  and ⟨d(x μ,x ν)⟩μ.

For additive noise, ⟨d(xμ,x μ)⟩μ,ξ = Tr(Cξ). To compute the average 
distance among noiseless patterns, we notice that

⟨d(x μ,x ν)⟩μ = 2
N
∑
i=1

⟨( xμi )
2
⟩μ = 2Tr (C x) = 2NDTr (C

z) , (23)

where Cx̄ is the trace of the covariance matrix of the noiseless input. 
Plugging these results into equation (12), the noise strength can be 
written as

∆x =
DTr (C ξ)
2NTr (C z) . (24)

We now use the same technique to compute the noise strength at 
the compression layer. By direct calculation,

⟨d(cμ, ̄c μ)⟩μ,ξ = Tr (GCξGT) , (25)

that is, the average distance between noiseless patterns and their 
noisy realizations depends on the alignment between the rows of 
G and the directions along which noise varies (the eigenvectors  
of Cξ). Similarly,

⟨d( ̄c μ, ̄c ν)⟩μ = 2Tr (C c) = 2NDTr (GAC
zATGT) , (26)

that is, the average distance among noiseless patterns depends on the 
alignment between the rows of G and the columns of A (which define 
the task subspace). Notice that the factor N

D
 results from the fact that 

we want order 1 input layer activity (Methods).
In most of the applications, we consider the case of isotropic noise, 

that is Cξ = σ2I, which yields

Δx =
σ2D

2Tr (C z) . (27)

In this scenario, we expect the noise component along the task 
manifold to scale as D/N. If the noise strength at the input layer is Δx, the 
minimum noise level achievable without signal reduction is therefore 
given by

Δminc = D
NΔx. (28)

This means that, for fixed task manifold representation, Δminc  scales  
as 1/N; that is, the more redundant the input representation is, the more 
it is possible to denoise it. PC-aligned compression attains this mini-
mum noise strength. Indeed, using the definition of PC-aligned com-
pression (equation (15)) in equations (25) and (26) we get

ΔPCc = σ2D2
2NTr (C z) =

D
NΔx, (29)

where we used equation (27) for the second equality.

In contrast, if compression weights are chosen randomly  
(equation (14)), the compression matrix rows are equally likely to  
overlap with task subspace and task-orthogonal directions, and the 
noise strength remains unchanged on average: Δrndc = Δx. Indeed, for 
random compression one has that, when averaging over the weights, 
⟨GTG⟩G =

1
N
I ⇒ ⟨Tr (GTG)⟩G = 1, and ⟨Tr (GAC zATGT)⟩G =

1
N
Tr (C z). Plugging 

these results in equations (25) and (26), we get that, on average,

Δrndc = σ2

2 1
D
Tr (C z)

= Δx. (30)

We have seen that whitening compression leads to the largest 
increase in dimension. However, by increasing the variance of sub-
leading components to achieve normalization, whitening might also 
inflate the effect of noise. Indeed, for whitening compression (equa-
tion (16)) we get Tr (GGT) = D

N
∑D
i=1 λ

−1
i  and, for the denominator, 

Tr (Cc) = Tr(I) = D. The resulting noise strength is therefore given by

ΔWc = σ2
2N

D
∑
i=1
λ−1i , (31)

where σ2 is the variance of the input noise. When Cz has a decaying 
eigenvalue spectrum, ΔWc > Δminc  (see equation (28)). This detrimental 
effect of whitening is particularly strong if the signal eigenvalues decay 
very quickly.

In summary, we showed that random compression leaves isotropic 
noise unaffected, PC-aligned compression attains the maximum noise 
reduction, and whitening compression, while filtering out noise in 
directions orthogonal to the task subspace, might inflate noise along 
the task subspace directions.

Optimal compression of clustered and distributed 
representations
Both GPC and GW involve the transposed of the embedding matrix A. 
We write G ~ AT to indicate that the compression implemented by AT is 
potentially followed by other matrix multiplications, for example, to 
implement whitening. For a clustered representation, this implies that 
the optimal compression matrix will depend on

The matrix BT implements the compression of input neurons belonging 
to the same cluster onto the same compression layer neuron and it 
corresponds to GFF, as in Fig. 3c. The matrix OTD is necessary to remove 
correlations among different clusters, and OD = I if clusters are uncor-
related (Methods). Because it is orthogonal, its inverse is equal to its 
transpose, and one can find the recurrent interactions necessary to 
implement optimal compression from

(I − Grec)−1 ∼ OTD
⇒ Grec ∼ I −OD.

(33)

For a distributed representation, because the input representa-
tion is by definition unstructured, one cannot simplify G ~ AT further. 
Because the columns of A are those of a random orthogonal matrix, 
they will contain almost surely both positive and negative elements, 
as depicted in Fig. 3d.

Optimal compression in the insect olfactory system
Recurrent inhibition. Here, we study the biologically relevant case 
of purely inhibitory recurrent connectivity. We start by considering 
global inhibition, characterized by a rank-one connectivity matrix 
that we write as

G rec = − gI
Nc
111111T, (34)

G ∼ OTDB
T. (32)
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where 1 is the vector of all ones. In this case, the recurrent connectivity 
matrix cannot be expressed as the identity plus an orthogonal matrix, 
as in equation (33), and therefore it cannot perform exact optimal 
compression of the input statistics. Instead, we study the impact of this 
simple form of recurrence on the covariance matrix of the compression 
layer representation. The inverse of I − Grec can be computed explicitly 
using the Sherman-Morrison formula:

(I + gI
Nc
111111T)

−1
= I − gI

Nc

111111T

1 + gI
. (35)

Plugging this expression in the definition of Cc,

C c = C c
0 −

gI
Nc

1
1 + gI

(111111TC c
0 + C

c
0111111

T) +
g2I
N2c

1
(1 + gI)

2 111111
TC c

0111111
T, (36)

where Cc
0 is the covariance matrix of c without considering recurrent 

inhibition. Because Cc
0  is symmetric, it can be decomposed as 

Cc
0 = UΛ0UT, where the columns of U form a set of orthonormal vectors. 

We now define u1 ≔ UT1, that is, the vector of the projections of the 
eigenvectors of Cc

0 on the constant mode 1. With this definition,

C c = C c
0 −

gI
Nc

1
1+gI

(111(u1)TΛ0UT + UΛ0u 1111
T)

+ g 2I
N 2c

1
(1+gI)

2 111(u1)TΛ0u1111
T,

(37)

where Λ0 is a diagonal matrix containing the eigenvalues of the C c
0. If 1 

is one of the eigenvectors of C c
0, then u1 only has one nonzero entry. In 

this case, global inhibition controls the strength of the uniform mode 
in Cc, and can be used to set it to zero. More generally, equation (37) 
shows that global inhibition acts on the projection of input modes on 
the constant mode. This is equivalent to say that the effect of global 
inhibition on a certain mode depends on the mode mean, that is, the 
average of the eigenvector entries. It is straightforward to generalize 
this derivation to the case of multiple inhibitory neurons which act on 
nonoverlapping groups of neurons.

Realistic odor sensory neuron responses. To generate realistic 
responses of OSNs, we considered a widely used dataset containing 
the responses (difference from baseline firing rate) of 24 types of OSNs 
to a panel of over 100 odors26. We use these responses to estimate the 
covariance across different odor receptor types, thereby obtaining an 
estimate of the values of different blocks in the covariance matrix of 
the input layer. More precisely, we set Cz = COSN (Extended Data Fig. 3a) 
and used a clustered embedding matrix A to construct the task-relevant 
input representation ̄x. While the estimate of the covariance matrix 
COSN  is noisy due to the limited number of odors in the dataset,  
we nonetheless found that the off-diagonal elements of COSN  were,  
on average, more positive than expected by chance given the amount 
of noise in the estimate, by shuffling the responses of OSNs to different 
odors (Extended Data Fig. 3b,c).

In Fig. 4b,c, we set GFF to mimic the convergence of OSNs of the 
same type:

GFFij = {
( N
D
λi)

−1/2
if j is aOSNof type i

0 otherwise
(38)

where we divided by λj, the diagonal elements of COSN, to implement 
normalization mechanisms across different types of inputs. To imple-
ment global inhibition, we set Grec = − gI

D
111111T. The dimension of the com-

pression layer representation increases monotonically with gI, but 
saturates around gI ≈ 1. We therefore set gI = 10 to ensure the strongest 
effect of global inhibition. For Fig. 4c, we modeled responses to mixture 
of odors as random patterns sampled from a Gaussian distribution 
with mean zero and covariance matrix COSN. Therefore, we sampled 

zμ ∼ 𝒩𝒩 (0,COSN)  for μ = 1, …, P, embedded these patterns in the input 
layer using a clustered embedding, and use them as the training set for 
a random classification task. For testing, we added Gaussian isotropic 
noise to the input layer COSN with standard deviation σ.

Local decorrelation
In Fig. 8, we considered the scenario in which expansion layer neurons 
in the single-step expansion architecture could locally decorrelate their 
input (that is perform whitening of their inputs), and nonlinearly mix 
the resulting signals. Using the same argument as for Hebbian compres-
sion with sparse connectivity (see equation (17)), the covariance of the 
input to an expansion layer neuron mi is

Cmi
kl = Cx

jk jl
for jk, jl ∈ Si, (39)

where Si is the set of K afferents to neuron mi. We implemented local 
decorrelation by assuming that the K weights of the incoming connec-
tions on an expansion layer neuron are set as

Jij = (ηTi J
(i))

j
, (40)

where ηi is a K-dimensional Gaussian random vector with independent 
entries and J(i) is such that J (i)Cmi

kl J
(i)T = I. In words, each expansion layer 

neuron performs whitening of its input via the matrix J(i) and mixes the 
resulting inputs with random coefficients ηij. Similarly, in Fig. 8d we 
used the same approach but at compression layer neurons to model 
local decorrelation at pontine neurons.

Forward model learning
When learning a forward model, the network should learn to predict 
the sensory consequences of motor commands. We assume that the 
dynamics of a motor plant can be summarized by a set of differential 
equations

̇s(t) = fff (s,u), (41)

where s ∈ ℝNs  describes the sensory state associated with the plant 
(such as proprioceptive or visual feedback), u ∈ ℝNu  is the motor  
command and f is a smooth, vector-valued nonlinear function that 
summarizes the dynamics of the plant. The forward model task is then 
to predict s(t + Δ), given s(t) and u(t). If the time interval Δ is small 
compared to the speed of the plant dynamics, we can approximate

s (t + Δ) ≃ s (t) + Δ ⋅ fff(s(t),u (t)). (42)

We assume that the cerebral cortex sends to the cerebellum infor-
mation about both s(t) and u(t). To implement a forward model, the 
cerebellum should relay the information received by the cortex (first 
term in equation (42)), and add to it the nonlinear function f(s, u). We 
assume that the relay operation is carried out by the mossy fiber to 
DCN pathway, while the PkC compute the negative of the nonlinear 
term and feed it to the DCN. The target of learning at PkC is then given 
by y(t) = – f(s(t), u(t)). We only consider the initial condition and the 
final state of a movement as the input and target in the forward model 
task. Therefore, we associate to a specific input zμ and the correspond-
ing target yμ.

In the model, we concatenate s(t) and u(t) in a single vector of task 
variables z(t) ∈ ℝNs+Nu  and embed it in the input representation  
in a distributed fashion. The target y of forward model learning is a 
vector, with an entry for each degree of freedom of the motor plant. In 
simulations, we only consider one target entry at the time, that is we 
assume that different target components are learned by separate sets 
of PkC, and report the average performance.

In summary, we cast the forward model learning task into a nonlin-
ear regression task, in which the network has to learn a nonlinear target 

http://www.nature.com/natureneuroscience


Nature Neuroscience

Article https://doi.org/10.1038/s41593-023-01403-7

function f(z) of the input z. Because the target function is smooth, it is 
convenient to use ReLU neurons the expansion layer instead of binary 
neurons. Furthermore, since Hebbian learning of the readout weights 
performs poorly in regression tasks, we used a pseudoinverse learning 
rule, that is we set the readout weights according to

w = (MMT + λI)−1My, (43)

where λ is the ridge regularization parameter and M is the matrix of 
activations of the expansion layer, that is each column of M is given 
by the vector mμ. We always choose the number of training samples 
Ptrain > M, so that we are in the underparameterized regime, and set λ = 0.

Planar two-joint arm target. We consider dynamics of a two-joint 
arm in the absence of gravity (planar)62. The arm consists of two bars 
of length l and mass m, and its state is defined by the two joint angles 
θ1 and θ2, and by the corresponding angular velocities. The dynamics 
equations are written, in matrix form, as

M(θθθ)θ̈θθ + B(θθθ, ̇θθθ) ̇θθθ = u, (44)

where u contains the two torques and M is a two-by-two matrix that 
contains the inertial terms

M(θθθ) = (
I1 + I2 +m2l 21 +m2l1 ̄l2 cos(θ2) I2 +m2l1 ̄l2 cos(θ2)

I2 +m2l1 ̄l2 cos(θ2) I2
) , (45)

where I1 and I2 are the moments of inertia of the two joints, while ̄l2  
is the center of mass of the forearm. The matrix B is given by

B(θθθ, ̇θ ̇θ ̇θ) = m2l1l2
2 sin(θ2) (

−2 ̇θ2 − ̇θ2
̇θ1 0

) + (
D1 0

0 D2
) , (46)

where D1 and D2 control the damping strength.
We assumed that, while the cerebellum receives as input the angu-

lar coordinates, the angular velocities and the torques, it has to predict 
the future state of the arm in terms of the Cartesian coordinates of 
the hand. This choice makes the problem highly nonlinear, since the 
Cartesian coordinates are given by

xhand = l1 cos(θ1) + l2 cos(θ1 + θ2) (47)

yhand = l1 sin(θ1) + l2 sin(θ1 + θ2). (48)

In Figs. 5d and 6e we considered two targets, Δxhand = xhand(t + Δ) –  
xhand(t) and Δyhand = yhand(t + Δ) – yhand(t), and plotted the average mean 
squared error (MSE) of these two targets. The initial conditions of the 
arm were generated by perturbing the joint angles and angular veloci-
ties around the point θ1 = θ2 = π/4, ̇θ1 = ̇θ2 = 0. The torques were sampled 
i.i.d. from a Gaussian distribution with mean zero and s.d. equal to 
1 N m. The parameters of the arm were m1 = 3 kg, m2 = 2.5 kg, l1 = 0.3 m, 
l2 = 0.35 m, ̄l2 = 0.21m, I1 = 0.1 kg m2, I2 = 0.12 kg m2, D1 = 0.05 kg m2/s, 
and D2 = 0.01 kg m2/s.

Supervisory input from DCN to the pontine nuclei. In Fig. 6d,e we 
introduced feedback from the DCN to the pontine nuclei. As detailed 
above, in the context of forward model learning we assume that the 
DCN output encodes the predicted state of the arm. In our model, 
such output is produced by combining the current arm state, which is 
relayed by the pontine nuclei–DCN direct connections, with the pre-
dicted difference in state, which is computed by the PkC. Considering 
a one-dimensional forward model problem for simplicity, the DCN 
activity is therefore given by (see also equation (42))

DCN (t) = s(t) − Δ ⋅ ̂y(t), (49)

where ̂y  is the PkC activity and the minus sign is due to the fact that PkC 
are inhibitory. We implemented a fully online learning procedure, in 
which the PkC activity is given by ̂y(t) = ∑M

i=1 wimi(t) , and the GrC–
Purkinje cell weights are updated at every sample presentation follow-
ing a delta rule (that is, stochastic gradient descent)

wi(t + 1) = wi(t) + ηw(y(t) − ̂y(t))mi(t), (50)

where ηw is the learning rate.
The input from DCN to the pontine nuclei does not affect its 

dynamics, but it acts as an input to the plasticity rule, following a modi-
fied version of Oja’s rule:

Ġij(t) = η [ci(t) + Fi ⋅ DCN (t)] [xj(t) − Gij(t) (ci(t) + Fi ⋅ DCN (t))] , (51)

where Fi is a constant determining the strength of the supervisory input 
and DCN(t) is the activity of a DCN neuron. In simulations, we sample 
Fi randomly and independently for each compression layer neuron.

For Fig. 6e, we ran the network updating both w and G at every sam-
ple presentation, for Ptrain samples. After that, we froze the compression 
weights G and learned the final readout weights w using the pseudoin-
verse rule. This was done for computational convenience. Indeed, since 
the regression problem is convex, we would have obtained the same 
readout weights using stochastic gradient descent, provided that we 
used a small enough learning rate. However, this would have required 
a very large number of samples.

Hebbian learning dynamics of corticopontine synapses in the 
presence of input from DCN. To understand the weight dynamics 
induced by the learning rule in equation (51), we consider the effect on 
a single compression layer neuron c ≔ ci, assuming that the target is a 
scalar, that is y ∈ ℝ. Assuming that the weight evolution is slow, so that 
we can average over x,

Ġ = η (C xG − (G TC xG − F 2⟨y 2⟩)G + FR xy) , (52)

where Rxy ≔ 〈xy〉x is the vector of input output correlations, with one 
component for each input dimension, and G denotes the vector of 
incoming weights onto c. We can express both G and Rxy in the  
basis formed by the PCA eigenvector of x, that is G(t) = ∑N

i=1 μi(t)a(i)   
and Rxy = ∑N

i=1 ria(i). We can then rewrite equation (52) as

̇μi = η(λiμi − (
N
∑
j=1
λjμ2j − F

2⟨y 2⟩)μi + Fri) . (53)

This equation shows that the overlap μi of the weight vector with a 
certain input PC a(i) will be driven by how correlated that PC is with 
the target y (last term on the right-hand side). Therefore, if F is large 
enough, leading PCs that are uncorrelated with the target will not be 
extracted by compression layer neurons.

Analysis of simultaneous corticocerebellar recordings
Summary of experimental setup. The recordings analyzed in Fig. 7 
were performed using the experimental setup described in detail in 
Wagner et al.13. In brief, a total of 24 Ai93/ztTA/Math1-Cre/Rbp4-Cre 
quadruple transgenic mice (9 female and 15 male), aged between 6 and 
16 weeks, were head-fixed and performed pushed a handle to perform 
L-shaped trajectories, either to the left or to the right. Of these, we 
considered data from the ten mice for which simultaneous imaging 
of layer-5 pyramidal cells and cerebellar GrC was performed, and only 
considered data from the first session after a mouse was considered 
expert on the task. Furthermore, we only retained ‘pure’ turn trials, 
that is, trials in which mice did not push the handle in the incorrect 
lateral direction by more than 500 μm at any point during either the 
forward or lateral motion segments. During the task, neural activity 
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from layer-5 pyramidal neurons in premotor cortex and cerebellar 
GrC was monitored simultaneously using two-photon microscopy, 
with a 30 Hz sampling rate. More precisely, GrC were imaged through 
a cranial window on top of lobules VI, simplex, and crus I. Data col-
lection and analysis were not performed blind to the conditions of 
the experiments, and no additional randomization or exclusion were 
performed compared with the original study. All procedures followed 
animal care and biosafety guidelines approved by Stanford University’s 
Administrative Panel on Laboratory Animal Care and Administrative 
Panel on Biosafety in accordance with National Institutes of Health 
(NIH) guidelines.

Model and input representation. To estimate task-relevant and 
task-irrelevant activity from the cortical recordings, we regressed the 
cortical activity using a set of basis functions aligned to the turn point 
in the behavioral trajectories. More precisely, we used two boxcar func-
tions covering, at most, 1 s before the turn and two boxcar functions 
covering at most 1 s after the turn. Furthermore, we used separate basis 
functions for right and left turns. In total, we then used eight boxcar 
basis functions, whose length was adapted to each trial trajectory. We 
considered task-relevant the activity that could be predicted using a 
linear model with such basis functions as predictors. All the residual 
(unpredicted) activity was deemed task-irrelevant.

The unobserved population followed the same update equations 
as the observed population. However, instead of having the measured 
cortical activity as the input, we generated synthetic data based on the 
measured task-relevant and task-irrelevant statistics. Synthetic 
task-relevant activity was generated using the linear regression model 
described above as a generative model. To sample task-irrelevant activ-
ity, we measured the sample covariance matrix of task-irrelevant activ-
ity separately for each session, and used it to generate new 
task-irrelevant activity for the unobserved population, assuming 
Gaussian statistics. Task-relevant and task-irrelevant activity was 
weighted by two parameters, σuoS  and σuoN , respectively.

Measures of correlation and selectivity. The correlations in  
Fig. 7c were measured by computing the Pearson correlation coeffi-
cient among all neuron pairs. These correlation coefficient had mean 
zero across neuron pairs; therefore, we took their s.d. deviation across 
neuron pairs as the measure of correlation strength for a single session, 
and then averaged across sessions. The same procedure was applied 
to correlations among GrC and between GrC and layer-5 cells, both in 
data and in the random and Hebbian model.

Our measure of cell selectivity to left/right turns is analogous to 
the one used in Wagner et al.13. In particular, we devise an encoding 
model using four boxcar basis functions corresponding to before/
after left/right turns. Each boxcar function was at most 300 ms long. 
After fitting a linear regression model with these basis functions, we 
quantified the number of coefficient significantly different from zero, 
independently for each of the four basis functions (criterion, P < 0.01), 
and normalized it by the number of neurons.

Statistical analysis
For all Welch’s t-tests, data was assumed to be normal but not formally 
tested. Deviations from normality are shown by reporting all individual 
outliers. For the analysis of neuronal activity, no statistical methods 
were used to predetermine sample sizes but our sample sizes are similar 
to those reported in previous publications13.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The data analyzed in this study was previously published in Hallem and 
Carlson26 and Wagner et al.13, and is available upon request.

Code availability
All the simulations and analyses were performed using custom code 
written in Python (https://www.python.org), and can be downloaded 
at www.columbia.edu/∼spm2176/code/muscinelli_2023.zip.
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Extended Data Fig. 1 | Learned compression is not beneficial when the  
input representation is unstructured. a: Performance over learning when  
the compression weights are being trained using error backpropagation. 
Parameters are the same as in Fig. 2a. The solid line and shaded areas indicate 
the mean and standard deviation of the fraction of errors across network 
realizations. b: Left: Fraction of error for different network architecture when  
the input representation consists of random and uncorrelated Gaussian  
patterns, as in previous work4,5. Single-step expansion performs significantly 
better than learned compression (two-sided Welch’s t-test, n = 10, t = 4.82,  
p = 2.4 ⋅ 10−4), presumably due to incomplete convergence of gradient descent, 

and comparably to whitening compression. Parameters: N = D = P = 500,  
M = 2000, f = 0.1, σ = 0.1. Right: same as the left panel, but with Nc = N/2 instead 
of Nc = N. Single-step expansion performs significantly better than learned 
compression (two-sided Welch’s t-test, n = 10, t = 26.8, p = 1.3 ⋅ 10−15). The box 
boundary extends from the first to the third quartile of the data. The whiskers 
extend from the box by 1.5 times the inter-quartile range. The horizontal line 
indicates the median. Parameters: N = D = P = 500, M = 2000, f = 0.1, σ = 0.1. In both 
left and right panels, the task-relevant input PC eigenvalues were set to not decay 
(p = 0) in contrast to previous figures, to consider a fully unstructured input 
representation.
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Extended Data Fig. 2 | Sign-constrained compression for clustered and 
distributed representations. a: Distribution of the excitatory compression 
weights that maximize the SNRc ∝ dim(c)(1− Δc)

2
, in the presence of a 

distributed input representation. b: Standard deviation of the out-degree of the 
input for the same compression matrix as in a, averaged across 10 realizations 
(red dashed line). The gray histogram represents the distribution of the same 
quantity for a compression matrix with the same sparsity but shuffled entries.  
c, d: Performance of a network with purely excitatory compression in the 
presence of a distributed input representation. Solid lines and shaded areas 
indicate the mean and standard deviation of the fraction of errors across network 
realizations, respectively. Parameters are the same as in Fig. 3e. c: Fraction of 
errors on a random classification task as a function of the redundancy in the input 
representation N/D. d: For fixed N/D = 10, network performance for different 
network architectures, as in Fig. 2a. ‘Excitatory’ indicates a network whose 
compression weights are trained to maximize the Hebbian SNR at the 

compression layer, that is SNRc ∝ dim(c)(1− Δc)
2

, while unconstrained indicates 
a network trained on the same objective but without sign constraints on the 
weights. Excitatory and optimal compression are not statistically different for  
n = 10). The training procedure is the same used in Fig. 2a. The box boundary 
extends from the first to the third quartile of the data. The whiskers extend from 
the box by 1.5 times the inter-quartile range. The horizontal line indicates the 
median. e, f: Increasing input redundancy yields a smaller benefit when 
considering clustered input representations. All the parameters are the same as 
c, d, except for the type of input representation. e: Same as c, but for a clustered 
input representation. f: Same as d, but for a clustered input representation. 
Purely excitatory compression does not achieve the performance of whitening 
(two-sided Welch’s t-test, t-statistics = 10.615, p = 2.54 ⋅ 10−11, n = 10) nor of 
unconstrained compression trained with the same objective (two-sided Welch’s 
t-test, t-statistics = 8.563, p =9.19 ⋅ 10−8, n = 10). In panels c, e the shaded regions 
indicate the standard deviation across 10 network realizations.
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Extended Data Fig. 3 | Realistic properties of odor receptor responses.  
a: Covariance of single odor receptor responses, computed from the Hallem-
Carlson dataset26, sorted according to the response variances. b: Histogram of 
off-diagonal terms in the covariance matrix in a (in red), compared to a shuffle 
distribution (blue) obtained by shuffling the responses to different odorants for 
a given odor receptor. c: Mean of off-diagonal elements of the data covariance 
matrix (red dashed line), compared to the histogram of the same mean for the 
shuffled responses as in b (blue). The mean of the original data is significantly 
larger than the mean of the shuffle distribution (permutation test, p < 10−4).  
d: Geometrical representation of tuning vectors that are aligned (yellow) 

versus not aligned (black) with principal components (gray), corresponding to 
clustered and distributed compression layer representations, respectively.  
e: Dimension expansion dim(m)/ dim(x) at the expansion layer plotted against 
the in-degree of expansion layer neurons K. f: Same as e, but showing the fraction 
of errors on a random classification task instead of the dimension. g: Same as e, 
right, but showing the noise at the expansion layer instead of the dimension.  
In panels e-g, the solid lines and shaded areas indicate the mean and standard 
error of the mean across network realizations, respectively. Network parameters: 
N = 1000, M = 2000, Nc = D = P = 50, p = 1, f = 0.1, and σ = 0.1.
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Extended Data Fig. 4 | Effect of architectural parameters on the effectiveness 
of Hebbian plasticity. a: Dependence of the network performance on Nc. 
Notice that performance saturates for relatively large values of Nc. b-d: The 
non-monotonic behavior of the network performance with L is robust to changes 
in Nc (b), N (c) and M (d). The optimal L moderately increases with N and it 
seems to start saturating for N > 500. e: Left: schematics of the setup in which 
compression weights are learned with Hebbian plasticity. Right: resulting mean 
squared overlaps between the rows of the compression matrix and the principal 
components, as a function of PC index. f: Same as e, but when compression 

weights are learned using Hebbian and anti-Hebbian learning rules in the 
presence of recurrent inhibition. We used the learning rule proposed in35 (see 
their Eq. (18)) to learn the compression weights. This learning scheme updates 
both the feedforward (excitatory/inhibitory) and the recurrent (inhibitory only) 
weights to introduce competition among compression layer units, enabling 
the extraction of sub-leading PCs. Notice that the decay is slower than without 
recurrent inhibition, indicating that several PCs are estimated considerably 
better, especially for large L. Unless otherwise stated, parameters were N = 500, 
Nc = 250, M = 5000, f = 0.1, D = P = 50, σ = 0.5, p = 0.1.

http://www.nature.com/natureneuroscience


Nature Neuroscience

Article https://doi.org/10.1038/s41593-023-01403-7

Extended Data Fig. 5 | Learning a forward model of a two-joint arm.  
a: Performance on the forward model task is non-monotonic with the pontine 
in-degree L. We plot the MSE on the forward model task as a function of L for the 
network with and without feedback from DCN. The best L is of the same order as 
we found for the classification task in Fig. 6a. We set σ = 1, while all the other 
parameters are the same as in Fig. 6e. The solid lines and shaded areas indicate 
the mean and standard deviation of the MSE across network realizations, 
respectively. b: DCN feedback leads to higher overlap of compression weights 
with signal principal components. We define the overlap of the weights onto unit 
i of the compression layer with the jth PC as overlapij = ∑N

k=1 GikAkj, where G is the 

compression matrix learned without (left) or with (right) the feedback from DCN, 
while A is the embedding matrix of the task-relevant components (blue) or 
task-irrelevant components (red). The violin plot shows the mean and 
distribution of the overlaps across compression layer units. We set σ = 1.8 and  
L = 50, while all the other parameters are the same as in Fig. 6e. In the violin plots, 
the whiskers indicate the entire data range, and the horizontal line indicates the 
median of the distribution. c: Performance on the forward model task while the 
compression weights are adjusted using our modified version of Oja’s rule in the 
presence of feedback from DCN, for two different levels of input noise and two 
target dimensions. All the other parameters are the same as in Fig. 6e.

http://www.nature.com/natureneuroscience


Nature Neuroscience

Article https://doi.org/10.1038/s41593-023-01403-7

Extended Data Fig. 6 | Dimension and noise contributions to local 
decorrelation performance. a, b: Dimension (a) and noise (b) contributions to 
the performance shown in Fig. 8b, using the same parameters. c, d: Dimension (c) 
and noise (d) contributions to the performance shown in Fig. 8c, using the same 
parameters. e-g: Dimension (e) and noise (f) contributions to the performance 
(g), for the antennal lobe architecture, as a function of the in-degree of Kenyon 
cells K. Input was generated using a clustered representation. The green dashed 
line indicates the value obtained with optimal compression. The parameters  

were chosen to be consistent with the insect olfactory system anatomy, that 
is D = Nc = 50, N = 1000, M = 2000, p = 1, f = 0.1, σ = 1, P = 100. Note that when K 
≥ 8, the local decorrelation strategy requires more synapses than the optimal 
compression one, for which K = 7 and L = 20. h, i: Dimension (h) and noise (i) 
contributions to the performance shown in Fig. 8d, using the same parameters. 
For all panels, the shaded areas indicate the standard deviation across network 
realizations.
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Extended Data Fig. 7 | Effect of nonlinearities at the compression layer.  
To achieve a performance with nonlinear compression layer units comparable 
to that of linear units, we set Nc = 250. To maximize the dimension of the 
compression layer after the nonlinearity, we also introduced a random 
rotation of the optimal compression matrix (see Methods 5). a: Dimension 
of the compression layer representation for linear versus nonlinear (ReLU) 
compression. For ReLU compression, the nonlinearity is applied after random 
(left), PC-aligned (center), and whitening compression (right). b: Same as a, but 
showing the noise strength at the compression layer Δc. c: Same as a, but showing 
the fraction of errors in the random classification task. In panels a-c, the box 

boundary extends from the first to the third quartile of the data. The whiskers 
extend from the box by 1.5 times the inter-quartile range. The horizontal line 
indicates the median. d: Fraction of errors over training when the compression 
weights are trained using gradient descent and the compression layer units 
are nonlinear (ReLU). For comparison, the horizontal dashed lines indicate the 
performance of networks with linear compression layer units. The solid lines 
indicate the mean over 10 network realizations and the shading indicates the 
standard deviation across network realizations. e: Performance at convergence 
for the same networks as in d. For all panels, parameters were N = D = P = 500,  
Nc = 250, M = 2000, f = 0.1, fc = 0.3, and σ = 0.1.
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Extended Data Fig. 8 | Expansion layer dimension and noise strength depend 
on compression layer dimension and noise strength. a: Dimension of the 
expansion layer representation as a function of the compression layer one. The 
compression layer representation was distributed, and its dimension was varied 
by changing p between 0 and 1. b: Noise strength Δm at the expansion layer as 
a function of the noise strength at the compression layer. Noise was additive, 

Gaussian, and isotropic at the compression layer, with standard deviation varying 
from 0 to 0.1. In both panels, solid lines show the theoretical result and dots are 
simulation results, averaged over 10 network realizations. Standard deviation 
of numerical simulations is not visible because it is smaller than the size of the 
marker. Parameters: Nc = 100, M = 1000, f = 0.1.
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