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Abstract

Interest in biologically inspired alternatives to backpropagation is driven by the
desire to both advance connections between deep learning and neuroscience and
address backpropagation’s shortcomings on tasks such as online, continual learn-
ing. However, local synaptic learning rules like those employed by the brain
have so far failed to match the performance of backpropagation in deep networks.
In this study, we employ meta-learning to discover networks that learn using
feedback connections and local, biologically inspired learning rules. Importantly,
the feedback connections are not tied to the feedforward weights, avoiding bio-
logically implausible weight transport. Our experiments show that meta-trained
networks effectively use feedback connections to perform online credit assignment
in multi-layer architectures. Surprisingly, this approach matches or exceeds a
state-of-the-art gradient-based online meta-learning algorithm on regression and
classification tasks, excelling in particular at continual learning. Analysis of the
weight updates employed by these models reveals that they differ qualitatively from
gradient descent in a way that reduces interference between updates. Our results
support the view that biologically plausible learning mechanisms may not only
match gradient descent-based learning, but also overcome its limitations.1

1 Introduction

Deep learning has achieved impressive success in solving complex tasks, and in some cases its
learned representations have been shown to match those in the brain [14, 21, 23, 30, 36]. However,
there is much debate over how well the backpropagation algorithm commonly used in deep learning
resembles biological learning algorithms. Several key features of backpropagation do not obviously
map onto biological implementations. One such feature is the requirement in backpropagation that
feedback weights are exactly tied to feedforward weights, even as weights are updated with learning.
Another is that backpropagation applies the derivatives of the forward-pass nonlinearities during
the feedback pass, which would require that feedback pathways have knowledge of the state of
feedforward pathways, likely at some time offset. The question of how credit assignment – the
communication of appropriate learning signals to neurons upstream of behavioral outputs – can be
implemented by biological circuits remains open. It also remains unclear whether feedback pathways
in neural circuits are best thought of as implementing an approximation to backpropagation, or some
other qualitatively different learning algorithm.

We propose a learning paradigm that aims to solve the credit assignment problem in more biologically
plausible fashion. Our approach is as follows: (1) apply local plasticity rules in a neural network
to update feedforward synaptic weights, (2) endow the network with feedback connections that
propagate information about target outputs to upstream neurons in order to guide this plasticity, and
(3) employ meta-learning to optimize feedback weights, feedforward weight initializations, and rates
of synaptic plasticity. The purpose of the meta-learned feedback is to modulate upstream activity in

1Source code for our experiments is available at github.com/jlindsey15/FeedbackAndLocalPlasticity
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such a way that, when the local plasticity rule is applied, useful weight updates are performed. On a
set of online regression and classification learning tasks, we find that meta-learned deep networks
can successfully perform useful weight updates in non-readout layers. In fact, we find that feedback
with local learning rules can match and sometimes outperform gradient descent as a within-lifetime
learning algorithm.

2 Related Work

A body of research has investigated alternative algorithms to backpropagation that relax or eliminate
the requirement of weight symmetry. One surprising set of results [20, 26] shows that random
feedback weights are sufficient to support learning for simple tasks. Another family of methods,
known as target propagation, uses a reconstruction loss to learn a feedback pathway that approximates
the inverse of the feedforward pathway [5]. However, both of these approaches have been found to
scale poorly to difficult tasks such as ImageNet classification [3].

A number of more recent methods have made additional progress on the weight symmetry problem
by proposing more biologically realistic mechanisms to enforce approximate weight symmetry
and thereby approximate gradient descent. Akrout et al. [1] and Kunin et al. [16] propose local
circuit mechanisms that enforce approximate weight symmetry and approach backpropagation-level
performance on ImageNet classification. Guerguiev et al. [8] pursue another approach to enforcing
approximate weight symmetry, leveraging the observation that the discontinuity of spiking neurons
allows for inference of their causal effects on downstream neurons. Lansdell et al. [19] propose an
RL strategy that enables neurons to estimate gradient signals. In this work we explore a very different
approach, eschewing any explicit or implicit constraints on the relationship between feedforward and
feedback weights. We view our approach as complementary to those described above.

Standard deep learning approaches that use stochastic gradient descent for optimization notably
fall short of human and animal learning in several key respects. In particular, such approaches
have difficulty learning from few examples [18] and learning online from a stream of data with
nonstationary statistics [28]. One approach to addressing these issues is meta-learning, in which
a network’s learning procedure itself is learned in an “outer loop” of optimization. The literature
contains many particular instantiations of this general idea. One class of models explores the
possibility of learning through the recurrent dynamics of the network [11, 34], and recent work has
sought to connect this approach to neuroscience [35]. Another line of research, dating back to [32],
allows learning to take place via synaptic weight updates in the network, and meta-optimizes the
weight update procedure. Several authors [2, 24, 25, 31] have developed a particular version of
this approach in which the form of synaptic updates is restricted to biologically motivated Hebbian
learning rules. Another popular class of methods is gradient-based meta-learning [6], in which
the network initialization is meta-optimized so that batch gradient descent will learn quickly from
few examples of a new task. This method has recently been extended to the continual learning
case, in which the “inner loop” optimization consists of many online gradient steps on a potentially
nonstationary data distribution [12].

3 Contributions

Our work draws from the literature described above and introduces new features. In our model, inner
loop learning takes place by synaptic weight updates according to a local, biologically motivated
learning rule. Unlike in [2, 24, 25], our model explicitly tackles the credit assignment problem by
enabling plasticity in early network layers introducing feedback weights that may be meta-optimized
to provide rich error information. This flexibility to meta-learn how error information is propagated
also differentiates our work from gradient-based meta-learning, bringing it closer to biological
plausibility and, we find, providing performance benefits in some cases. Despite this flexibility, our
approach constrains the learning procedure substantially compared to methods that learn through
recurrent dynamics, as in [11, 34], or weight update functions parameterized by another neural
network, as in [32]. We propose that our neurobiologically inspired constraints and incorporation of
error-carrying feedback connections provide useful inductive biases for meta-learning while retaining
sufficient flexibility.
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Our empirical results show the promise of this approach, which proves surprisingly effective even
given the rather primitive tools – direct, shallow, and fixed feedback pathways – provided to our
meta-learner. These findings motivate extensions that scale and extend the method to apply to more
complex and diverse problems. Furthermore, we make preliminary analyses of the learning strategies
uncovered by our meta-learning algorithm. Our observations have implications both for biologists
examining the role of feedback connections in the brain, and for machine learning practitioners in
search of effective inductive biases to guide learning.

4 Method

See Figure 1 for a schematic comparing our framework to standard backpropagation and direct
feedback alignment [26]. Our method consists of three main stages – feedforward processing,
feedback updates, and weight updates. For convenience, we will henceforth refer to the method as
FLP, for “feedback and local plasticity.”

First, a multi-layer feedforward network, whose ith layer has forward weights Wi, propagates an
input x forward through its layers, produces an output ŷ, and receives a target signal y. Then y,
or the prediction error y − ŷ, is propagated through a set of feedback weights. We obtained better
performance using prediction errors for the regression task, and using raw targets for the classification
task (see Section 5 for task details). Our reported results reflect these choices, which yield better
performance both for our method and the gradient-based baseline, and thus do not unfairly advantage
one method over the other. In our experiments, separate pathways carry feedback information directly
from the output to each layer, as in direct feedback alignment [26]. The feedback to the ith layer
layer takes the form of a single linear transformation, parametrized by the matrix Bi. These choices
were made for simplicity, and more complex feedback architectures are an interesting topic for future
study.

Subsequently, the activations of the neurons at each layer are updated in response to the feed-
back. The activations of layer i, which are xi during the feedforward pass, are updated to
xi ← (1− βi)xi + βi · ReLU(Biy − b). Here, βi controls the strength of feedback relative to
feedforward input, Bi is the matrix of feedback weights described above, and b is a bias term.
The rectification ensures nonnegative activations following the feedback stage and introduces some
nonlinearity in the feedback updates. Note that βi = 0 corresponds to pure unsupervised Hebbian
learning in layer i; thus, the βi parameter can be interpreted as interpolating between unsupervised
and supervised learning.

The network then undergoes synaptic plasticity according to a local learning rule – local in the
sense that a synaptic weight w is updated based only on its existing value, the presynaptic activity a,
and the postsynaptic activity b resulting from feedback.2 In our simulations we use Oja’s learning
rule: w ← w + α(ab− b2w), where α is a plasticity coefficient [27], a normalized modification of
standard Hebbian learning that prevents diverging weights. We typically allow plasticity only in the
final N network layers, allowing the initial layers to serve as fixed feature extractors.

4.1 Meta-learning procedure

The description above specifies how a network in our model learns in its “lifetime.” However, to
create a network that effectively learns using the above procedure, we employ meta-learning. More
specifically, for each of our benchmark tasks (Section 5) we simulate a lifetime consisting of an entire
learning episode and a test input, evaluate the performance on the test input, backpropagate through
the entire learning procedure (see [6, 12]), and repeat this process for many lifetimes. The meta-
learned parameters are the initializations of Wi, the feedback weights Bi, as well as the plasticity

2We may take a to be the pre or post-feedback presynaptic activations. The post-feedback case corresponds to
a model in which neural activations are updated directly with feedback and Hebbian-style plasticity ensues. The
pre-feedback case can be interpreted similarly, assuming a temporal eligibility trace for plasticity. Alternatively,
the pre-feedback case could be interpreted as modeling an implementation in which feedback signals are
propagated without affecting the neural activations used in feedforward computation. Possible biological
implementations include a segregated dendrites model (see [9]), or feedback through neuromodulatory signals,
with weight updates that are proportional to presynaptic and neuromodulatory activity (see [10]). We report
results for the pre-feedback case; preliminary experiments suggest similar results are obtained in either case.
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Figure 1: A comparison of backpropagation, direct feedback alignment [26], and the proposed method (FLP). W
and B variables represent linear transformations, φ indicates the activation function, and ◦ denotes composition.
Red quantities indicate plastic weights that change during a network’s lifetime, while green quantities indicate
meta-learned quantities optimized over many lifetimes. In backpropagation, learning signals propagate through
a feedback pathway involving transposes of the feedforward weights and the derivative of the neuron activation
function. Direct feedback alignment replaces the transpose matrices with random feedback pathways. In FLP,
feedforward weights evolve according to Hebbian plasticity during a lifetime, while feedback pathways and
initial feedforward weights are meta-optimized across many lifetimes. Additionally, error signals are injected
into upstream layers directly, without any derivative computations.

coefficient α for each weight and the coefficient β for each layer. We used the Adam optimizer [15]
for meta-optimization. Additional implementation details can be found in Appendix B.

4.2 Universality

It can be shown that sufficiently wide and deep neural networks that employ the above learning
procedure can approximate any learning algorithm. A learning algorithm, for our purposes, is a map
from a set of training examples {(x,y)k} and a test input x? to a predicted output ŷ∗.

Theorem. Let θ refer to the feedforward weights of a network. For any learning rule
ftarget({(x,y)k},x?), there exists a deep ReLU network with associated feedforward function
f̂(·; θ) and (potentially multilayer) feedback pathways as described above, such that f̂(x?; θ′) ≈
ftarget({(x,y)k},x?). Here θ′ = θk, θ0 = θ, and θj+1 = θj + ∆θj (y,x), where ∆θ(y,x) is the
weight update computed following feedback according to a local learning rule at each synapse, either
Hebb’s rule or Oja’s rule.

Proof. See Appendix A for the complete proof. The proof borrows heavily from that of Finn et
al. [7], but deviates from it in at least one major respect: in the online, continual learning case, the
ability to choose feedback weights separately from the feedforward weights is essential to the proof
construction. It should be noted that existence results of this kind have tenuous relationship with
a method’s practical utility; nevertheless we find this aspect of the proof suggestive of a key role –
borne out in our experimental results – for decoupled feedforward and feedback weights in online
learning.

5 Experiments

We build off the experimental protocol of Javed and White [12], evaluating our approach on the same
regression and classification tasks, all of which require online learning. These tasks are themselves
adaptations of those used in Finn et al. [6] to the online setting. We explore both online i.i.d. (data
sampled randomly) and online continual (data from different distributions presented sequentially)
learning. Also following [12], we use a nine-layer fully connected network for regression tasks, and
a network with six convolutional layers + two fully connected layers for classification tasks. More
details are provided in Appendix B.

4



Table 1: Regression Results (Mean squared error)

Method i.i.d. learning Continual learning

Feature Reuse (1) 0.050 (7e-3) 0.035 (3e-3)
FLP (2) 0.00093 (3e-5) 0.0016 (6e-5)
FLP (3) 0.00051 (8e-5) 0.0068 (2e-3)
Gradient-based (3) 0.00057 (2e-5) 0.069 (0.02)
Original OML (3) 0.072 0.40

Table 2: Classification Results (% Error)

Method Omniglot Omniglot (continual) Mini-ImageNet

Feature Reuse (1) 4.6 (0.1) 5.0 (0.1) 48.2 (0.1)
FLP (2) 3.0 (0.1) 2.7 (0.1) 42.5 (0.6)
Gradient-based (2) 3.2 (0.1) 3.4 (0.1) 42.5 (0.3)
Original OML (2) 3.5 7.0 52.0

(Note: Parentheses in the "Method" column indicate the number of plastic layers in the network.)

Incremental Sine Waves: The regression problem is as follows: in each training episode, ten sine
functions fn(x), n = 1 . . . 10, are sampled randomly, each parameterized by an amplitude in [0.1, 5]
and phase in [0, π]. The input x̃ contains both the function input x and the index n of the function
(“sub-task”) being used. The network must output y = fn(x). In each episode, 400 size-32 batches
of (x̃, y) pairs are presented, sampled equally from the ten sinusoids. In the i.i.d. version of the
task, (x̃, y) examples are presented in random order. In the continual learning variant, all examples
from the first sinusoid are presented, then all from the second, and so on. We emphasize that in both
variants, each size-32 batch of data is presented exactly once, without repetition, making the problem
“online.” At the end of an episode, the network is tasked with outputting y for a new x̃. Evaluation
occurs on new episodes with sine functions not used in meta-training. Meta-training is performed for
20,000 episodes.

Online, few-shot classification: We consider the Omniglot [17] and Mini-Imagenet [33] datasets.
In each case, the dataset is split into meta-training and meta-testing classes. During an episode, k
examples from each of N classes are presented. In the i.i.d. version of the task, they are presented in
random order, while in the continual learning version, all k examples from one class are presented
before proceeding to the next. The model is tested on unseen examples from the classes in the episode.
We evaluate performance for k = 5, N = 5. In the feedback phase, output activations are clamped to
their target values, but feedback weights to earlier layers are meta-learned. Evaluation episodes use
classes never seen in meta-training. Meta-training is performed for 40,000 episodes. We emphasize
that in each episode, data is presented one example at a time, and each example is seen exactly once,
distinguishing this task from typical N -way, k-shot classification benchmarks.

Experimental Protocol: We evaluate our method in two ways: (1) To assess our method’s ability to
enable useful deep credit assignment, we meta-train and test variants of the network with different
numbers of plastic layers. We include as an important control the case in which only the output
weights are plastic and thus no feedback is involved in learning. Following [29], we refer to this
as the "feature reuse" regime, as such networks are constrained to fit readouts on top of a fixed
feature extractor within each lifetime. (2) We compare our method’s performance to a gradient-based
meta-learner based on OML [12]) with the same architecture. We matched the architecture and
hyperparameter optimization procedures of the two methods to enable fair comparison – this resulted
in our baseline exceeding the performance of the unmodified OML algorithm (for which we also
report results).

6 Performance Results

The discussion below refers to numerical results in Table 1 and Table 2. Listed figures reflect averages
over two (for regression tasks) or five (for classification tasks) independently meta-trained networks,
with standard error indicated in parentheses.
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6.1 Meta-learned feedback is useful for learning

The objective of our framework is to enable deep credit assignment – namely, useful weight updates
in non-readout layers – while avoiding biologically unrealistic model properties. To assess our
method’s ability to enable deep credit assignment, we meta-train and test variants of the network
with different numbers of plastic layers, including the "feature reuse" regime where only output
weights are plastic [29]. One of our central results is that, in all tasks we consider, enabling plasticity
in non-readout layers improves performance (Tables 1 and 2), indicating that credit assignment is
performed successfully.

6.2 FLP networks match gradient-based learners

These results demonstrate that meta-learning can uncover feedback weights that aid learning, without
biologically implausible weight symmetry or nonlocality. Next we assess the significance of this
improvement, relative to what can be achieved without biological constraints. For comparison, we
consider a baseline adapted from OML [12], a state-of-the-art gradient-based online meta-learning
model. We augmented the OML optimization procedure to match that of our model, such that the
only difference is OML’s use of gradient updates in its inner learning loop. As mentioned above, our
modifications only improved performance of the original OML (details in Appendix B). We refer to
this as our “gradient-based” baseline. In all cases, FLP matches the performance of the gradient-based
baseline, indicating that meta-learned feedback weights can provide learning signals as useful as
gradients, despite these weights being fixed rather than tied to feedforward updates. The learning
trajectories are similar for FLP and gradient-based networks, with FLP networks appearing to learn
more quickly on the Omniglot task (see Appendix C).

6.3 FLP networks outperform gradient-based learners on continual learning tasks

We next asked whether our method provides advantages beyond gradient-based learners. Motivated by
the observation that gradient-based algorithms struggle on continual learning tasks, we experimented
with a continual learning variant of the regression task. In this version, the network observes all
data from one function before it encounters the next, and so on. Thus, the network is required to
learn multiple functions sequentially within its lifetime, without losing its ability to generate previous
functions. We found that on this task, our method yielded significantly better performance than
the gradient-based baseline. Indeed, in the regression tasks, the gradient-based baseline did not
outperform the feature reuse control, while FLP outperformed it substantially. This result suggests
that our biologically motivated approach can not only match the performance of gradient-based
algorithms, but in fact exceed them in difficult continual learning problems.

We also experimented with the continual learning variant of the Omniglot task, in which all examples
of a given class are presented sequentially, followed by the examples of the next class. We found
that FLP modestly outperformed the gradient-based baseline. We note that, due to computational
constraints, the lengths of episodes in this task – 25 examples each – are much smaller than those of
the continual learning regression task – 400 each – which may explain the more modest improvement.
Future work may clarify the situations in which FLP is especially advantageous.

7 Analysis

The above results demonstrate the existence of learning algorithms that achieve high performance
using weight updates that differ from those used by backpropagation. We next analyze properties of
these algorithms to attain a better understanding of how they accomplish this.

7.1 Tradeoff between effective and adaptable feature extraction at initialization

We investigated whether networks with many plastic layers meta-learned a fundamentally different
strategy than those with only a plastic readout limited to a “feature reuse” strategy. For convenience we
will refer to the pre-readout component of a network as its “feature extractor”. Networks constrained
to a feature reuse strategy require a feature extractor that is meta-trained to compute generally useful
features for the given family of tasks. Networks with plasticity in more layers, on the other hand,
may adopt different strategies that involve adjustment of the feature extractor within a lifetime.
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Figure 2: (A) In orange: performance of example networks with different numbers of plastic layers. In blue:
performance of those same networks with non-readout weights frozen at their initializations, and readout weights
trained for many epochs on i.i.d data within each lifetime. (B) Illustration of interference on the continual
learning regression task. X-axis: number of tasks (of the ten total) that have been encountered thus far. Y-axis:
The change in the network’s outputs on data from previous tasks, comparing the network before and after it
encounters the current task. (C) Correlation (cosine similarity) of the updates performed by the FLP networks
with the negative gradient direction. (D) Magnitude of weight updates in different network layers over the course
of learning the i.i.d. regression task, for the FLP and gradient-based networks.

Surprisingly, we found that the feedforward weights of FLP networks with many plastic layers, which
ultimately learn to perform the task more effectively, are less effective at initialization than similar
networks with fewer plastic layers. We quantified this phenomenon by freezing the initial weights of
each network and fitting a linear readout to perform the tasks in the given task family – see Figure 2A.

This result alone does not preclude the possibility that a network could begin with an effective
feature extractor and still learn the task well – the meta-optimization may have simply not chosen
such a solution. To address this possibility, we took a network that had been meta-optimized in the
feature reuse regime. Then we enabled feedback and plasticity in upstream layers while freezing the
feedforward weight initialization, and continued meta-optimizing. This procedure failed to improve
the performance of the network beyond the performance of a feature reuse network. Hence, initial
weights that are optimized for feature reuse are distinct from those that enable learning in FLP
networks. The results are suggestive of a tradeoff between adaptable networks – those that learn well
from data – and networks that are task-ready (up to a linear readout) “from birth.”

7.2 FLP networks mitigate cross-task interference and forgetting

We investigated the source of FLP’s advantage on continual learning tasks. We hypothesized that FLP
is able to mitigate “forgetting” – interference of new learning with previous knowledge. We quantified
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this phenomenon in the regression task by measuring the average squared change – before vs. after
encountering the data from one sinusoid – of the network’s output on examples from earlier sinusoids.
As shown in Figure 2B, the FLP network performs learning updates that have a drastically smaller
effect on its previously learned behavior than the gradient-based baseline. The inner-loop learning
performance trajectories (see Appendix C) are consistent with this observation – the gradient-based
baselines match or exceed FLP networks’ initial learning speed, but lose ground as more and more
interfering tasks are encountered.

7.3 FLP networks perform weight updates that differ substantially from the loss gradient

The structure of FLP networks (with direct, fixed feedback pathways) prevents them from imple-
menting gradient descent exactly, and the continual learning results above suggest that their learning
strategy differs substantially from gradient descent. Once meta-trained, how distinct are their updates
from those of gradient descent? We quantified this difference by examining the correlation between
weight updates in FLP networks and updates that would be computed by gradient descent.

We found that the alignment of weight updates with the gradient direction was often weak, but also
exhibited substantial diversity across layers (Figure 2C). Some network layers performed updates
negatively correlated with the gradient update. Many layers exhibited periodicity in their gradient
correlation corresponding to the structure of the continual learning task. Unlike feedback alignment,
for which this correlation would consistently increase over training, FLP networks exhibit diverse
trends over training steps. We also observed that, on the regression task, FLP networks perform larger
weight updates in non-readout layers and smaller weight updates in the readout layer, relative to
the gradient-based baseline (Figure 2D). Together, these phenomena indicate that the meta-learned
feedback network learns in a manner that is qualitatively different from gradient-based learners.

8 Discussion

This work demonstrates that meta-learning procedures can optimize neural networks that learn online
using feedback connections and local plasticity rules. These networks, once meta-optimized, use
learning strategies that differ – sometimes in advantageous ways – from gradient-based optimization.
Based on these results, we conjecture that there exists a space of learning algorithms, each with its
own advantages and biases, that can be explored productively with meta-learning approaches. It is
important to note that we have experimented with only a handful of benchmarks, each involving a
rather narrow distribution of tasks. It is possible that FLP networks will exhibit different behavior on a
wider array of learning problems. Nonetheless, we show that for standard benchmarks from the meta-
learning literature, FLP is both competitive with and substantially different from backpropagation.
Our results suggest several avenues for future work.

8.1 Extensions within the FLP framework

In this work, we focused on a simple, tractable instantiation of the FLP framework. There are many
opportunities to branch out from the particular choices made here. For instance, meta-learning the
plasticity rule itself, within some parameterized family [4, 22], could provide advantages over the
simple Hebbian rule we adopted. Moreover, while we achieved surprisingly effective performance
using feedback weights that are fixed within a lifetime, there is no a priori reason to enforce this
constraint. One can imagine the feedback weights themselves being subject to plasticity along
with the feedforward weights. There is also no reason feedback needs to take place only via direct
pathways from the network output to its earlier layers. More complex feedback architectures may
improve performance, and feedback from higher intermediate layers (with no target information) to
lower layers could enable more effective forms of unsupervised learning.

8.2 Scaling the method

Meta-learning as implemented in this work is computationally expensive, as the meta-learner must
backpropagate through the network’s entire training procedure. In order to scale our approach, it
will be important to find ways to meta-train networks that generalize to longer lifetimes than were
used during meta-training, or to explore alternatives to backpropagation-based meta-training (e.g.
evolutionary algorithms). The present work focused on the case of online learning from a manageable
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amount of data, but the case of learning from prolonged exposure to large datasets is also of interest
to neuroscientists and machine learning practitioners alike. Scaling the method substantially will be
critical to exploring this regime.

Moreover, scaling to larger problems will enable a more precise characterization of the circumstances
in which particular learning “ingredients” are necessary and useful. For instance, in preliminary
experiments with our regression task, we found that enabling plasticity in all layers gives similar
performance to enabling it in 3 layers. We suspect that the performance saturates as a function of the
number of plastic layers because of the nature of these tasks, rather than a fundamental limitation of
our algorithm, as we find the same trend holds for gradient-based meta-learners. Along the same lines,
we found that enabling nonlinear feedback pathways also did not improve performance significantly.
We suspect that different or more complex tasks might expose the value of even deeper and more
sophisticated feedback pathways.

8.3 Biological realism

Our method avoids weight symmetry and nonlocality – two of the more unbiological aspects of
gradient-based neural network training – but it still relies on some biologically unrealistic features.
For instance, in the present implementation, the feedforward and feedback + update passes occur
sequentially. A natural extension of our model would enable them to run in parallel, as in a recurrent
network. This requires ensuring (through meta-learning, or perhaps a segregated dendrites model [9])
that feedforward and feedback signals do not interfere destructively. Moreover, our method requires
the meta-learner to specify a precise feedforward and feedback weight initialization. Optimizing
instead for a distribution of weight initializations or connectivity patterns might better reflect the
limited precision with which connectivity can be specified by a genome [37]. Another direction is to
apply meta-learning to understand particular biological learning systems (see [13] for an example of
such an effort). Well-constrained, meta-optimized biological learning models might show emergence
of learning circuits found in nature and suggest new ones to look for.

Broader Impact

While the eventual impacts of our work are hard to predict because of its theoretical nature, we hope
that it represents a step toward a better understanding of biological learning algorithms. Such an
understanding may lead to more flexible artificial systems as well as advances in basic neuroscience.
One concern is that these and related methods are computationally expensive, and their widespread
adoption at scale could lead to significant energy consumption and/or raise barriers to entry in this
field of research. It remains to be seen whether algorithmic advances can mitigate this issue.
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