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To behave adaptively in an ever-changing environment, ani-
mals must be able to learn new associations between sensory 
cues (conditioned stimuli, CS) and rewards or punishments 

(aversive and appetitive unconditioned stimuli, US), and continu-
ously update previous memories, depending on their relevance and 
reliability1–3.

Modulatory neurons (for example, DANs) convey information 
about rewards and punishments, and provide the teaching sig-
nals for updating the valence associated with CS in learning cir-
cuits across the animal kingdom (for example, the vertebrate basal  
ganglia1,4 or the insect mushroom body, MB)3,5,6. The co-occurrence 
of CS and modulatory neuron activity tuned only to the received 
US can support simple associative memory formation6. To account 
for more complex behavioral phenomena, theories have been devel-
oped in which learning can be regulated by previously formed asso-
ciations7,8. According to reinforcement learning theories, learning 
is driven by errors between predicted and actual US (prediction 
errors)7,8, which are thought to be represented by the activity of 
DANs1,4. Indeed, in many model organisms, the responses of mod-
ulatory neurons have been shown to be adaptive, including mon-
keys1, rodents4,9 and insects3,5,10,11. Despite recent progress3,4,9, the 
basic principles by which DAN activity is adaptively regulated and 
teaching signals are computed are not well understood.

A prerequisite for the adaptive regulation of modulatory neu-
ron activity is convergence of afferent pathways that convey 
information about received US1,4 with feedback pathways that 
convey information about previous experiences. A comprehensive  

synaptic-resolution connectivity map of the feedback circuits that 
regulate modulatory neurons would provide a basis for understand-
ing how learning is adaptively regulated by prior learning, but it has 
previously been out of reach.

Insects, especially in their larval stages, have small and compact 
brains that have recently become amenable to large-scale electron 
microscopy (EM) circuit mapping12,13. Both adult3,6,14 and larval15 
insect stages possess a brain center that is essential for associative 
learning, the MB. The MB contains neurons called Kenyon cells 
(KCs) that sparsely encode CS, MB modulatory neurons (collectively 
called MB input neurons, MBINs) that provide the teaching signals 
and MB output neurons (MBONs) whose activity represents learnt 
valences of stimuli3,6,14,15. In the Drosophila larva, most modulatory 
neurons are DANs, some are octopaminergic neurons (OANs) and 
some have unidentified neurotransmitters (simply called MBINs)15. 
Modulatory neurons and MBONs project axon terminals and den-
drites, respectively, onto the KC axons in a tiled manner, defining 
MB compartments, in both adult3 and larval15 Drosophila. In adult 
Drosophila, it has been shown that coactivation of KCs and DANs 
reduces the strength of the KC–MBON synapse in that compart-
ment3,16,17. Different compartments have been implicated in the 
formation of distinct types of memories, for example, aversive and 
appetitive, or short and long term3,14,15,18,19. However, despite a good 
understanding of the structure and function of the core components 
of the MB in both adult3,6,14,20 and larval Drosophila15, the circuits 
presynaptic to modulatory neurons that regulate their activity have 
remained relatively uncharacterized.
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We therefore reconstructed all neurons presynaptic to all mod-
ulatory neurons in an EM volume that spans the entire nervous 
system of a first instar Drosophila larva, in which we had previ-
ously reconstructed all the core components of the MB12. We also 
determined which individual modulatory neurons are activated by 
punishments and reconstructed their afferent US pathways from 
nociceptive and mechanosensory neurons. We characterized the 
neurotransmitter profiles of some of the neurons in the network 
and functionally confirmed some of the identified structural con-
nections. Finally, we developed a model of the circuit constrained 
by the connectome, the neurotransmitter data and the functional 
data, and used it to explore the computational advantages offered by 
the recently discovered architectural motifs for performing distinct 
learning tasks.

Results
Larval MB modulatory neurons for aversive and appetitive 
memory formation. We began with a functional characterization 
of larval modulatory neurons and asked which ones signal punish-
ment or reward. Activation of all DL-cluster DANs that target the 
vertical lobe, the lateral appendix and the peduncle (with a broadly 
expressing TH-GAL4 driver line) has been shown to induce aver-
sive memory for paired odors21. Activation of individual larval 
PAM-cluster DANs that target the MB medial lobe has been shown 
to induce appetitive memory for paired odors22. However, the role 
of other individual modulatory neuron types was not known. We 
generated Split-GAL4 lines that drive expression selectively in one 
or two modulatory neurons per hemisphere (Fig. 1a, Extended Data 
Fig. 1 and Supplementary Table 1).

We then paired an odor (CS) with optogenetic activation of these 
modulatory neurons in a three-trial, one-odor, short-term memory 
associative memory paradigm (Fig. 1b). We found that activation 
of DAN-f1 (innervating the intermediate vertical lobe), DAN-g1 
(lower vertical lobe) or DAN-d1 (lateral appendix) established aver-
sive memory for paired odors (Fig. 1c and Extended Data Fig. 2). In 
contrast, as previously reported15,22, activation of DANs that inner-
vate the medial lobe led to the formation of an appetitive memory 
for paired odors (Fig. 1c and Extended Data Fig. 2). Thus, similar to 
findings in the adult fly3,18, larval DANs that innervate distinct lobes 
signal opposite valences.

Pairing of an odor with the activation of DAN-c1 (lower pedun-
cle) or of the non-dopaminergic modulatory neurons induced nei-
ther appetitive nor aversive memory (Fig. 1c and Extended Data 
Fig. 2). Thus, our analysis revealed at least three functionally dis-
tinct classes of compartments in the larval MB: medial lobe com-
partments whose DANs can induce appetitive memory for paired 
odors, lateral appendix and lower and intermediate vertical lobe 
compartments whose DANs can induce aversive memory for paired 
odors, and others whose modulatory neurons were not sufficient to 
induce short-term memory (Fig. 1c).

Punishment encoding across larval MB modulatory neurons. 
Next, we asked whether there is any functional diversity within the 
population of DANs whose activation signals punishment.

Larvae sense multiple types of innately aversive somatosensory 
stimuli that evoke distinct types of innate avoidance and escape 
responses23–27 (Fig. 1d). Already the mildest of these punishments, 
vibration that is transduced by mechanosensory neurons evokes a 
turning avoidance response and induces aversive memory for paired 
odors28. Fittingly, we found that optogenetic activation of nocicep-
tive sensory neurons and of Basin interneurons (and their down-
stream A00c interneurons) that evokes more vigorous fast crawling 
and rolling escape, respectively, also induces aversive memory for 
paired odors (Fig. 1d,e and Extended Data Fig. 2).

We therefore asked how individual modulatory neurons 
respond to different punishment types by monitoring their calcium  

transients in response to optogenetic activation of specific somato-
sensory neurons. In each of the three DANs whose activation 
induced aversive memory for paired odors, we found reliable 
responses to at least two fictive punishment types. Each punish-
ment type evoked reliable and statistically significant responses in 
at least two DANs, but each DAN’s tuning differs (Fig. 1f). Thus, 
these three DANs could combinatorially encode punishment type 
or salience.

For comparison, we also tested responses of a few modulatory neu-
rons (e.g., of upper vertical lobe, UVL) whose activation paired with 
odor did not induce short-term aversive memory, and found that they 
were not significantly activated by the fictive punishments (Fig. 1f).

EM reconstruction of all input neurons to MB modulatory  
neurons. To provide a basis for understanding how the activity and 
function of modulatory neurons are regulated, we sought to com-
prehensively identify all of the neurons presynaptic to them. We 
have previously reconstructed all of the KCs, MBONs and modu-
latory neurons in an EM volume of a first instar larval nervous  
system12. Here, we systematically reconstructed all neurons presyn-
aptic to all modulatory neurons (that is, premodulatory neurons) 
in the same EM volume (Fig. 2a–e). We identified 213 left-right 
homologous pairs and 5 unpaired premodulatory neurons. Of 
these, 102 homologous pairs were reliably and strongly connected 
(see Methods; Fig. 2a,b,e; Supplementary Adjacency Matrices 1, 2 
and 3; and Supplementary Atlas). Although the ‘other weakly con-
nected partners’ could also influence modulatory neuron activ-
ity, especially in combination with each other, we focus our study 
mainly on the 102 reliably and strongly connected partners.

We asked how the functional diversity of modulatory neurons 
relates to their input diversity. As expected, functionally distinct 
DANs receive inputs from distinct subsets of premodulatory neu-
rons, and functionally similar DANs share a higher fraction of pre-
synaptic partners with each other than with other DANs (Fig. 2e 
and Extended Data Fig. 3). Nevertheless, each modulatory neuron 
type, which is distinguishable based on the compartment it inner-
vates or based on neurotransmitter expression, receives input from 
a unique combination of neurons, and thus potentially encodes a 
unique set of features.

Feedback neurons reveal a highly recurrent architecture for com-
puting teaching signals. We aimed to characterize the premodula-
tory neurons based on the inputs they receive. We asked whether 
they convey information about previously formed memories (via 
feedback originating from MBONs) or about received US (via affer-
ent input from sensory neurons), or both. Surprisingly, we found 
that the majority (61/102) of premodulatory neurons receive feed-
back input from MBONs (Fig. 2a–c and Extended Data Fig. 4a–c). 
Forty neuron pairs receive reliable direct input from MBONs, pro-
viding one-step feedback from MBONs to modulatory neurons 
(we call these one-step feedback neurons (FBNs); Fig. 2a–c and 
Extended Data Fig. 4a). Another 21 premodulatory neuron pairs 
receive reliable direct input from FBNs (but not MBONs) and pro-
vide two-step feedback from MBONs (two-step feedback neurons 
(FB2Ns); Fig. 2a–c and Extended Data Fig. 4b). The majority of 
FBNs also receive input from other FBNs, providing two-step, as 
well as one-step, feedback (Fig. 2b,c and Extended Data Fig. 4a). 
The remaining premodulatory neurons do not receive reliable 
direct MBON or FBN input, so we classified them tentatively as 
‘feedforward neurons’ (FFNs; Fig. 2a–c).

To determine the likelihood that MBONs could influence modu-
latory neuron activity via the feedback pathways, we analyzed the 
fraction of total input that FBNs and FB2Ns receive from MBONs 
and that modulatory neurons receive from feedback pathways. In 
previous studies we have demonstrated functional connections 
when neurons received 2% or more of their input from another  
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neuron26,27. We found that FBNs receive on average 12% of their 
synaptic input from MBONs and 26% from MBONs and FBNs 
combined (Extended Data Fig. 4a,c). Similarly, FB2Ns receive on 

average 17% of their synaptic input from FBNs and 28% from FBNs 
and FB2Ns combined (Extended Data Fig. 4b,c). Based on these 
input fractions, we expect that MBONs can substantially influence 
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FBN and FB2N activity. Strikingly, we found that many modula-
tory neurons receive more than 50% of their total dendritic input 
from all feedback pathways combined (Fig. 2d). This suggests  
that modulatory neuron activity could be strongly influenced by 
MBON activity.

Multilevel convergence of afferent and feedback pathways. We 
investigated how the feedback pathways from MBONs converge 
with afferent pathways from US sensing neurons. We focused 
on the DANs that respond to somatosensory neuron activation  
(Fig. 1f) and asked whether they receive somatosensory and MBON 
input via distinct or overlapping premodulatory neurons. We had 
previously reconstructed all first-order neurons downstream of 
nociceptive and mechanosensory sensory neurons and a subset of 
second- and third-order ones26,27. This enabled us to search for the 
shortest pathways from these somatosensory neurons to modula-
tory neurons. Although the pathways identified in this way repre-
sent only a subset of existing pathways, nevertheless, we were able 
to identify two-, three- and four-step pathways from the somatosen-
sory neurons to six different premodulatory neurons that target the 
vertical lobe and lateral appendix modulatory neurons: three FFNs 
and three FB2Ns (Fig. 2f, Supplementary Fig. 1, Supplementary 
Adjacency Matrix 1 and Supplementary Atlas). Thus, the afferent 
US pathways converge with feedback pathways from MBONs at 
multiple levels, both onto the modulatory neurons themselves (via 
FFNs) and onto the premodulatory FB2Ns.

Modulatory neurons receive convergent one-step feedback from 
multiple MBONs innervating functionally distinct compart-
ments. Next, we analyzed in more detail the types of one-step 
feedback motifs formed by FBNs (Figs. 2a–c and 3a–c; Extended 
Data Figs. 5–9; Supplementary Fig. 2a,b; Supplementary Adjacency 
Matrix 1 and Supplementary Atlas). We observed a surprising diver-
sity of one-step FBNs that linked unique combinations of MBONs 
with unique combinations of modulatory neurons (see Fig. 3a for 
examples and Extended Data 5 for the complete dataset). Out of the 
40 FBNs, 7 provide exclusively within-compartment feedback, and 
13 provide exclusively cross-compartment feedback. Interestingly, 
many FBNs (17; Fig. 3a,d, Extended Data Fig. 5 and Supplementary 
Fig. 2a) integrate input from MBONs of functionally distinct com-
partments (Fig. 1c and Extended Data Fig. 6). Almost all of these 
FBNs (at least 13/17) receive GABAergic (inhibitory) or glutama-
tergic (potentially also inhibitory29,30 in insects) input from MBONs 
innervating compartments and cholinergic (excitatory) inputs from 
MBONs innervating other compartments (Fig. 3a,d, Extended Data 
Fig. 5 and Supplementary Fig. 2a). The integration of inhibitory 
and excitatory inputs may enable these FBNs to more accurately 
read out the results of learning-induced plasticity by comparing its 
effects across compartments.

Not only do most FBNs receive input from multiple MBONs, 
but also most modulatory neurons receive input from multiple 

FBNs (Figs. 2e and 3a, Extended Data Fig. 7 and Supplementary 
Fig. 2b). We therefore analyzed one-step connections from all 
MBONs to all modulatory neurons via FBNs. We found that 
most modulatory neurons receive one-step feedback from many 
MBONs and from each of the three functionally distinct regions 
of the MB: upper vertical lobe (unknown function), vertical 
lobe aversive memory compartments and medial lobe appetitive 
memory compartments (Fig. 3b,c). This is in stark contrast with 
the direct connections from MBONs to modulatory neurons,  
which are sparse and connect few compartments (Extended Data 
Fig. 8a,b). Thus, the recently discovered FBNs greatly increase 
the connectivity between MBONs and modulatory neurons,  
enabling the output from functionally distinct regions of the MB 
to influence the activity of single modulatory neurons during 
memory formation.

A modulatory neuron receives inhibitory and excitatory feed-
back from compartments of opposite valence. To gain a better 
understanding of the way in which feedback motifs influence mod-
ulatory neuron activity, we were able to determine the neurotrans-
mitter profiles of some of them (see Methods). We found that four 
of the tested FBNs are cholinergic (that is, excitatory), three are 
GABAergic (that is, inhibitory) and one is glutamatergic (likely also 
inhibitory29,30; Fig. 3a and Extended Data Fig. 9).

For a few cases where we could identify the neurotransmitter 
profiles of both the MBON12 and the FBN in a one-step feedback 
connection, we predicted the signs of these connections (Fig. 3b). 
Of these, all of the true within-compartment feedback connections 
are potentially inhibitory (4/4), comprising a GABAergic or glu-
tamatergic MBON and an excitatory FBN (Fig. 3b,e). In contrast, 
most of the (8/11) cross-compartment connections seem func-
tionally excitatory, either disinhibitory (comprising an inhibitory 
MBON and an inhibitory FBN) or excitatory (comprising an excit-
atory MBON and an excitatory FBN; Fig. 3b,e). Furthermore, some 
modulatory neurons (for example, DAN-g1 and DAN-i1) receive 
both potentially inhibitory feedback from their own compartment 
and potentially excitatory feedback from compartments of opposite 
valence (Fig. 3b,e).

We wanted to functionally confirm the two types of predicted 
feedback connections onto the same DAN (Figs. 3e and 4a–g). 
DAN-i1 potentially receives inhibitory one-step feedback from 
MBON-i1 in its own compartment (Fig. 4a,b) and disinhibitory 
one-step feedback from MBON-m1 from compartments of oppo-
site valence (Fig. 4a,e). Neither of these MBONs synapses directly 
onto DAN-i1. Furthermore, DAN-i1 receives two-step feedback 
from MBON-i1, but not from MBON-m1 (Fig. 5e). We activated 
these MBONs optogenetically while recording intracellularly  
from DAN-i1.

Activating MBON-i1 evoked long-latency (55 ± 17 ms) inhibi-
tory responses in DAN-i1 in three of nine animals (Fig. 4c,d and 
Supplementary Fig. 3a), consistent with a polysynaptic connection 

Fig. 2 | Comprehensive EM reconstruction of premodulatory neurons reveals a multilayered recurrent architecture for regulating learning. a, Projections 
of EM reconstructions of 102 neuron pairs found to be strongly connected to modulatory neurons. The majority (61) relays inputs from MBONs: 40 FBN 
pairs (light blue) and 21 FB2Ns (yellow). The remaining 41 are classified as FFNs (light green). b, Connectivity matrix showing normalized synaptic input 
(in %) each homologous pair of postsynaptic (columns) neurons receives from each pair of presynaptic (rows) neurons. c, Schematic wiring diagram 
of the extended MB circuit. d, Fraction of total dendritic input each modulatory neuron receives from different neuron types. Most DANs receive more 
than half of their input from MBON feedback pathways, whereas most OANs receive most input from weakly connected partners. Some DANs extend 
dendritic arbors to the KCs, which accounts for KCs dendritic input; KCs axonic inputs are described elsewhere (Eichler et al.12). Red and blue, aversive 
and appetitive memory compartments, respectively, in all legends. Bottom: percent of inputs onto modulatory neurons from (i) MBON, FBN, and FB2N; 
(ii) FFNs; and their ratio. This ratio is greater than 1 in most cases. e, Connectivity matrix showing normalized synaptic input (expressed as % input) each 
modulatory neuron (columns) receives from each premodulatory neuron (rows). Premodulatory neurons synapse onto a single or a few functionally 
related modulatory neuron(s) (see also Extended Data Fig. 3). VL, vertical lobe. f, US pathways converge with feedback pathways at modulatory neurons 
and at FB2Ns. Diagram shows the shortest identified US pathways from somatosensory neurons to vertical lobe modulatory neurons. Thickness of the 
arrow represents fraction of input.
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mediated by an FBN (Figs. 3b and 4b). The interanimal variabil-
ity could be caused by different baseline activity levels of the FBN 
(as illustrated in Supplementary Fig. 3b). In five of nine animals  
(Fig. 4c and Supplementary Fig. 3a) we observed inhibitory 

responses to the offset of MBON-i1 activation only. These offset 
responses had a longer latency (95 ± 44 ms) than the onset responses 
and could therefore be mediated by a longer two-step feedback 
pathway (see Supplementary Fig. 3c).
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In contrast, we found that activating MBON-m1 evoked excit-
atory responses in DAN-i1 in three of three animals with a similar 
latency (47 ± 9 ms) to the inhibitory responses evoked by MBON-i1 
activation (Fig. 4e–g and Supplementary Fig. 3d).

In summary, we confirmed with physiological recording an infer-
ence we had made from structural connectivity and neurotransmit-
ter information (Fig. 3e): functionally inhibitory and excitatory 
MBON connections from compartments of opposite valence con-
verge onto the same DAN (Fig. 4a–g).

Two-step feedback further increases intercompartment con-
nectivity. We also analyzed the connections between all MBONs 
to all modulatory neurons via two-step pathways (Figs. 2a–c and 
5a–e; Extended Data Fig. 4a–c; Supplementary Figs. 4, 5a–d and 
6; Supplementary Adjacency Matrix 1 and Supplementary Atlas). 
We found two-step feedback pathways from most MBONs to most 
modulatory neurons that further increase intercompartment con-
nectivity (Fig. 5e and Extended Data Fig. 8b). We were able to 
determine neurotransmitter profiles for seven neurons that provide 

two-step feedback: three were cholinergic, two were GABAergic 
and two were glutamatergic (Fig. 5b,d and Extended Data Fig. 9). 
In summary, we found a diverse set of two-step feedback motifs that 
could support within- and cross-compartment computations.

Feedback neurons can drive memory formation. So far, we have 
shown that some indirect feedback connections from MBONs to 
DANs are functional (Fig. 4b–g). We also wanted to test whether 
the feedback neurons can sufficiently influence DAN activity to 
induce learning. We generated Split-GAL4 lines that drive expres-
sion selectively in one or very few neuron types for a cholinergic 
FB2N, a glutamatergic FB2N and a GABAergic FBN (Extended 
Data Figs. 1, 9 and 10). These neurons project onto DANs whose 
activation can induce aversive memory for paired odors (Fig. 1c and 
Extended Data Fig. 2). We asked whether optogenetic activation of 
these neurons is sufficient to induce memory in our olfactory train-
ing paradigm (Fig. 6). We found that activation of the excitatory 
cholinergic FB2N induces aversive memory for paired odors (Fig. 6a 
and Extended Data Fig. 2), similar to activation of its postsynaptic 

CA

IP

LP

LA

LVL

IVL

UVL

SHA
UT

IT
LT

Inhibitory (GABA)

Unknown

Excitatory (ChAT)

Likely inhibitory (GluT)

Type of connection

CA

IP

LP

UVL

SHA

UT

IT

LT

Aversive
memory

Appetitive
memory

Undetermined

LA

LVL

IVL

a

c

Modulatory
neurons

MBONs

Ex: FBN-7, FBN-23,
FAN-9, FAN-8,

FAN-8

MBIN-e1

a1
a2

b3

h1
h2

FBN-3

DAN-j1j1

FBN-7

DAN-i1

DAN-k1

e1

i1

FBN-20

DAN-g1g1
g2

FAN-10

DAN-g1

k1

FAN-9

DAN-d1

c1

k1

FAN-8

MBON-a1/a2

d

Modulatory
neurons

MBONs

Ex: FAN-9, FAN-10

Ex: FBN-3, FBN-7, FBN-20

e

b

Connectivity index

Excitation (ChAT-ChAT)

Disinhibition (GABA-GABA)

Putative dishinibition
(GluT-GluT or GABA-GluT)

Inhibition (ChAT-GABA)

Putative inhibition
(ChAT-GluT)
Additional unknown
connection (s)

u

C
A

LP
IP

U
V

L
 IV

L
LA

LV
L

IT
U

T
S

H
A

LT
LA

/V
L

MBON-k1

MBON-j1

MBON-i1

MBON-h2

MBON-h1

MBON-q1

MBON-p1

MBON-o1

MBON-n1

MBON-m1

MBON-g2

MBON-g1

MBON-f1

MBON-e2

MBON-e1

MBON-d3

MBON-d2

MBON-d1

MBON-c1

MBON-b3

MBON-b2

MBON-b1

MBON-a2

MBON-a1

CA LPIP UVL  IVL LVL ITUT LTLA
LA
/VL

O
A

N
-a

1

O
A

N
-a

2

M
B

IN
-b

1

M
B

IN
-b

2

D
A

N
-c

1

D
A

N
-d

1

O
A

N
-e

1

M
B

IN
-e

1

M
B

IN
-e

2

D
A

N
-f

1

D
A

N
-g

1

O
A

N
-g

1

M
B

IN
-l1

D
A

N
-i1

D
A

N
-j1

D
A

N
-k

1

1

2

5

10

u u

uu

u

u

u

u

u

u

Type of connection

5 10 201 2

Modulatory neurons

C
A

IP LP LAU
V

L

IV
L

LV
L

U
T

IT LT

M
B

O
N

s

IT

LT

UT

SHA

LVL

IVL

UVL

LA

LP

IP

CA

Connectivity index:

 MBIN-e1

KC

FBN-23

DAN-i1

DAN-d1

m1

m1

m1

MBON-h1/h2MBON-h1/h2
MBON-b3MBON-b3

Fig. 3 | Modulatory neurons receive convergent one-step feedback from multiple MBONs from functionally distinct compartments. a, Diagram 
representing the connectivity of seven example pairs of homologous FBNs. Boxes indicate separate MB compartments, with presynaptic MBON(s) on the 
left side and postsynaptic modulatory neuron(s) on the right. When known (Extended Data Fig. 9 and Eichler et al.12), the neurotransmitter profiles of the 
MBONs and FBNs are indicated by the type of arrow. See Extended Data Fig. 5 for diagrams of each of the 40 FBNs. b, Connectivity matrix shows the one-
step feedback connections between MBONs and modulatory neurons via FBNs, obtained by multiplying the MBON → FBN and FBN → modulatory neuron 
normalized connectivity matrices. Connectivity indexes are the square roots of the matrix products. Colored circles indicate putative signs of connections 
if neurotransmitters of both MBONs and FBN(s) are known. Red and blue color shades indicate aversive and appetitive compartments, respectively. Pure 
within-compartment connections (excluding multicompartment MBONs) are boxed in bold. The four pure within-compartment connections with known 
neurotransmitters are potentially inhibitory, in contrast with cross-compartment connections. c, Connectivity indexes from b pooled per compartment.  
d,e, Summary diagram of commonly observed convergence motifs. d, Many FBNs (at least 13) receive convergent inputs of opposite sign (that is, 
excitatory and inhibitory) from functionally distinct compartments. e, DANs (for example, DAN-g1 and DAN-i1) receive convergent inputs of opposite sign 
from functionally distinct compartments via distinct one-step FBN pathways. ChAT, choline acetyltransferase; GluT, vesicular glutamate transporter.

Nature Neuroscience | VOL 23 | April 2020 | 544–555 | www.nature.com/natureneuroscience 549

http://www.nature.com/natureneuroscience


Articles NAturE NEurOSCiEnCE

DAN-f1 (Fig. 1c). Interestingly, pairing of an odor with the activation 
of the GABAergic FBN or the glutamatergic FB2N induces appetitive 
memory for paired odors (Fig. 6b,c and Extended Data Fig. 2a,b), 
opposite to activation of their postsynaptic DANs (Fig. 1c).

Connectivity-constrained model of the circuit reveals feedback 
neurons improve performance on complex learning tasks. To 
explore the computational consequences of the feedback neurons, 
we developed a model of the circuit constrained by: (1) the con-
nectome, (2) the known neurotransmitter identities and (3) the 
valences of compartments (Fig. 1c). The presence or absence of 
connections between MBONs, DANs and feedback neurons in the 
model was determined by the connectome, and for neurons known 
to be excitatory or inhibitory, the signs of the connections were 
fixed to be consistent with this designation. We additionally used 
synapse counts from the connectome to set the initial strengths of 
model connections. Because synapse counts alone are unlikely to 
fully determine functional interactions, we then adjusted these con-
nection strengths using gradient descent to optimize the network to 

perform a set of associative learning tasks31 (see Methods). Unlike 
in standard recurrent neural network models, we modeled ongoing 
modifications of KC-to-MBON connections using a synaptic plas-
ticity rule that depends on the timing of KC and modulatory neuron 
activity consistent with experimental findings16,22.

We assessed the contributions of different feedback pathways 
by repeating the optimization procedure for networks lacking such 
feedback and by comparing their performance. Tasks included first-
order conditioning and extinction that have been demonstrated 
in both larval15,32 and adult Drosophila3,33, and second-order and 
context-dependent conditioning that have so far been found only in 
adults34,35. In second-order conditioning, a reinforcement predict-
ing CS is used to reinforce a second stimulus, whereas in context-
dependent conditioning, the US valence depends on a previous 
contextual input.

We found that the performance on all tasks was considerably 
degraded in the absence of all feedback, including direct MBON 
feedback, one-step feedback via FBNs and two-step feedback via 
FB2Ns and FBNs (Fig. 7a,b). The removal of the indirect feedback  
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are tested separately (b–d and e–g). b, The cholinergic FBN-7 downstream of the glutamatergic MBON-i1 could mediate inhibitory one-step within-
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95.3 ± 43.5 ms) of MBON-i1 activation (purple bar). d, Example trace from c (more in Supplementary Fig. 3a). e, The GABAergic FBN-23 downstream of 
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plots. We observed a long-latency excitatory response in DAN-i1 at the onset of MBON-m1 activation (purple bar, 3 of 3 animals, 51.3 ± 7.7 ms).  
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alone (with intact direct MBON feedback) also considerably 
degraded the performance on all tasks, with especially strong effects 
on the more complex tasks (Fig. 7a,b). Even the removal of two-step 
feedback alone notably diminished performance on two of the more 
complex tasks (second-order conditioning and context-dependent 
conditioning), with a drastic effect on context-dependent condi-
tioning (Fig. 7a,b). Thus, each additional feedback level improves 
the performance of the network when it is tested on challenging 
associative learning tasks.

We also constructed networks lacking one- and two-step feedback 
within or across compartments. Removal of within-compartment 
feedback diminished performance on all tasks, whereas removal of 
cross-compartment communication substantially reduced perfor-
mance for second-order conditioning (Fig. 7a,b). In total, each of 
the feedback categories revealed by the EM reconstruction may be 
important for associative learning paradigms that require computa-
tions such as prediction, prediction error or context dependence.

Feedback neurons enable adaptive responses of modulatory neu-
rons in the model. The high fraction of feedback input originating 
from MBONs onto modulatory neurons suggests that their activity 
could be adaptively regulated by prior learning. To test this idea, 
we computed an index that quantifies the mean change in modula-
tory neuron firing rates in response to CS+ (that is, the CS that was 
paired with the US) presentations before and after conditioning.  

We found that this index is indeed substantially enhanced by the 
presence of feedback neurons (by FBNs and FB2Ns together, or 
even just FBNs alone; Fig. 7c). The optimized networks exhibit a 
diversity of adaptive modulatory neuron responses (some examples 
are shown in Fig. 7e).

After a CS–US pairing, many modulatory neurons acquired 
responses to CS+ that resemble their responses to the US that had 
been paired with that CS+ (Fig. 7d,e, second row). These responses 
were notably attenuated in networks that lacked feedback, includ-
ing those that lacked just indirect feedback and just cross-com-
partment feedback (Fig. 7d). Such responses have been observed 
in modulatory neurons across the animal kingdom4,5,36, including 
adult Drosophila10,11. They are consistent with a computation of the 
valence that is predicted by the CS+ (that is, a predicted value) and 
could drive the formation of an association between a second stimu-
lus and a CS during higher-order conditioning.

Some modulatory neurons acquired CS+ responses that were 
opposite in sign to their responses to that US and potentially rep-
resent prediction errors (Fig. 7e, third and fourth rows). Some 
of those appear to be activated by the omission of a predicted 
US whose valence is opposite that of the neuron’s preferred US  
(Fig. 7e, third row). Such responses potentially represent positive 
prediction errors and have been proposed to support extinction 
by inducing a parallel memory of opposite valence2,3,33. Consistent 
with this idea, in adult flies, DANs of opposite valence and direct 
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cross-compartment MBON-to-DAN connections have been impli-
cated in extinction3,33, but the role of indirect feedback pathways 
has not been investigated. In our model we find that removing 
indirect feedback considerably reduces performance of networks 
optimized to extinguish a previous association (Fig. 7a). Some 
modulatory neurons also showed prolonged inhibition in response 
to the omission of a predicted US whose valence is the same as 
the neuron’s preferred US (Fig. 7e, fourth row). Such responses 
potentially represent negative prediction errors1 and have been 
proposed to support extinction by erasing the memory formed by 
the activation of that modulatory neuron2. Thus, our model raises 
the possibility that extinction could be implemented via multiple 
mechanisms in this circuit2.

Discussion
Modulatory neurons (for example, DANs) are key components 
of higher-order circuits for adaptive behavioral control, and they 
provide teaching signals that drive memory formation and updat-
ing1,3,4,9,15,33,37. Here, we provide a synaptic-resolution connectiv-
ity map of a recurrent neural network that regulates the activity 
of modulatory neurons in a higher-order learning center, the 
Drosophila larval MB (Fig. 2a–f). We also functionally tested some 
of the recently identified structural pathways and developed a 
model of the circuit to explore the roles of these motifs in different 
learning tasks (Fig. 7a–e).

Feedback pathways enable adaptive regulation of learning by 
prior learning. We discovered a large population of 61 feedback 
neuron pairs that provide one- and/or two-step feedback from 
the MBONs to modulatory neurons (Figs. 2a–d, 3a,b and 5a–e). 
Strikingly, we found that many modulatory neurons receive more 
than 50% of their total dendritic input from feedback pathways  
(Fig. 2d). These results suggest that prior memories as represented 
by the pattern of MBON activity can strongly influence modulatory 
neuron activity.

Learning and memory systems in vertebrates9 and insects3,14,18,19 
are often organized into distinct compartments implicated in form-
ing distinct types of memories (for example, aversive and appetitive 
or short and long term). Interestingly, we found that the majority 
of the discovered feedback pathways link distinct memory systems, 
suggesting that the MB functions as an interconnected ensemble 
during learning (Figs. 3b and 5e). Thus, prior memories formed 
about an odor in one compartment can influence the formation 
and updating of distinct types of memories about that odor in other 
compartments.

In adult Drosophila, functional connections between some 
MBONs and DANs33,37–43 have been reported, and some have been 
shown to play a role in short-term memory formation37,40,44, long-
term memory consolidation39,42, extinction and reconsolidation3,33,41, 
or in synchronizing DAN ensemble activity in a context-dependent 
manner38. In some cases, direct MBON-to-DAN connections have 
been demonstrated33,37,39,41. Although direct connections from sev-
eral MBONs onto DANs exist in the larva12 (Extended Data Fig. 8a), 
we find that indirect connections via the feedback neurons account 
for a much larger fraction of a modulatory neuron’s dendritic input 
than direct MBON synapses (Fig. 2d). This suggests that adaptive 
DAN responses may be largely driven by such indirect feedback.

Some of the one-step within-compartment feedback motifs we 
found are analogous to the feedback motifs so far described for 
the DANs in the vertebrate midbrain4,45–49. Although the diversity 
and the inputs of striatal feedback neurons have not yet been fully 
explored, in the future it will be interesting to determine whether 
many of the striatal feedback neurons also link distinct memory 
systems.

Circuit motifs for computing integrated predicted value sig-
nals across aversive and appetitive memory systems. The use of 
internal predictions can dramatically increase the flexibility of a 
learning system1,7,8. Our study reveals candidate circuit motifs that 
could compute integrated predicted value signals across appetitive 
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and aversive memory systems. A prominent motif we identified is 
convergence of excitatory and inhibitory connections from MBONs 
from compartments of opposite valence onto DANs (Figs. 3b–e and 
4a–g). In naive animals, odor-evoked MBON excitation in all com-
partments is thought to be similar. However, associative learning 
selectively depresses conditioned odor drive to MBONs in compart-
ments where modulatory neuron activation has been paired with 
the odor3,16. We propose that by comparing the conditioned odor-
evoked MBON excitation in compartments of opposite valence via 
cross-compartment feedback connections, modulatory neurons 
compute an integrated predicted value signal across appetitive and 
aversive domains.

Convergence of feedback and US pathways could allow the compu-
tation of prediction errors. An important aspect of reinforcement  

learning theories is the idea that modulatory neurons compare 
predicted and actual US (to compute so-called prediction errors) 
and drive memory formation or extinction depending on the sign 
of the prediction error. Although Drosophila modulatory neurons 
have not yet been directly shown to represent prediction errors, 
adult and larval Drosophila are capable of extinction3,32,33, and our 
study reveals candidate motifs that could support the comparison of 
expected and actual US. We found that modulatory neurons receive 
convergent input from feedback pathways from MBONs and from 
US pathways (Fig. 2d–f). Modulatory neurons could therefore 
potentially compute prediction errors by comparing inhibitory 
drive from the feedback pathways with the excitatory drive from the 
US pathways, or vice versa. Consistent with this idea, we observed 
in our model some DANs that are inhibited by US alone and acti-
vated by CS+ alone, or vice versa (Fig. 7e, third and fourth rows).
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Our study also reveals that US pathways and feedback pathways 
converge at two levels: not only at the modulatory neurons them-
selves, but also at the FB2Ns (Fig. 2f). Actual and expected outcomes 
could therefore also be compared by FB2Ns. A recent study in the 
mouse ventral tegmental area has found that some pre-DAN neu-
rons encoded only actual or only expected reward, whereas others 
encoded both variables4,45. Thus, both in vertebrates and in insects, 
comparing predicted and actual outcomes may be a complex com-
putation involving multiple levels of integration that eventually con-
verge onto an ensemble of modulatory neurons45.

Diversity of feedback inputs across modulatory neurons suggests 
a range of distinct and distributed teaching signals. An assump-
tion in many reinforcement learning models is that all modulatory 
neurons receive a global scalar reward prediction error signal1. Here, 
we were able to analyze the comprehensive set of inputs of every 
individual uniquely identifiable modulatory neuron in a learning 
center. This revealed that each modulatory neuron receives a unique 
set of feedback inputs (Fig. 2e) that could enable each neuron to 
compute a unique set of features. Consistent with this, we observed 
a diversity of adaptive response types in the modulatory neurons in 
our model (Fig. 7d). This suggests that instead of computing a single 
global reward prediction error that is distributed to all modulatory 
neurons, the network uses a range of distinct compartmentalized 
and distributed teaching signals.

Multilevel and cross-compartment feedback increase perfor-
mance and flexibility. Our connectivity and modeling studies 
revealed two architectural features of the circuit that provide input 
to the modulatory neurons that increase its performance and flex-
ibility on learning tasks (Fig. 7a,b). The first is the multilevel feed-
back architecture that includes not only the previously known direct 
MBON feedback33,37,39,41, but also multiple levels of indirect feedback. 
The second is the extensive set of cross-compartment connections. 
Modeling suggests that these motifs support improved performance 
on complex tasks that require the computation of variables such as 
predictions, prediction errors and context.

In summary, we present a complete circuit diagram of a recurrent 
network that computes teaching signals in a biological system, pro-
viding insights into the architectural motifs that increase its compu-
tational power and flexibility. Our connectome-constrained model 
provides numerous predictions that can be tested in the future in a 
tractable model organism, for which genetic tools can be generated 
to monitor and manipulate individual neurons26,27,50. The connec-
tome, together with the functional and modeling studies, therefore 
provides exciting opportunities for elucidating the biological imple-
mentation of reinforcement learning algorithms.

Reporting summary
Further information on the research design is available in the Nature 
Research Reporting Summary linked to this article.
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Methods
Fly lines. In the main text and figures, short names are used to describe genotypes 
for clarity. See Supplementary Table 1 for a complete list of full names of all driver 
lines and effectors. We used GAL4, Split-GAL4 lines to direct the expression of the 
red-shifted channel-rhodopsin 20XUAS-CsChrimson-mVenus (ref. 51; Bloomington 
Drosophila Stock Center BDSC 55134, gift of V. Jayaraman) or the calcium 
indicator 20xUAS-IVS-GCaMP6f (ref. 52) in pairs of neurons or subsets of neurons. 
Split-GAL4 lines restrict expression of the effector to a few cells, under the double 
control of two enhancers (inserted in the attP2 and attP40 docking sites), selected 
by us or others in the Janelia Research Campus (HHMI) based on their GAL4 
expression pattern50,53,54.

Modulatory neurons (MBINs). We used SS24765-Split-GAL4 to optogenetically 
activate OAN-a1 in the calyx. We generated SS02160-Split-GAL4 to activate DAN-
c1 in the lower peduncle. For the vertical lobe, we generated SS01702-Split-GAL4 
to activate or image calcium transients in MBIN-e2 (DAN-c1 was also covered 
by this line) and SS01958-Split-GAL4 to activate or image calcium transients in 
OAN-e1 in the upper vertical lobe (UVL). We used SS02180-Split-GAL4, MB145B-
Split-GAL4 (used for activation and calcium imaging, gift of G. Rubin and Y. Aso) 
and MB065B-Split-GAL4 (ref. 55) (which also covered DAN-c1) to target DAN-f1 
in the intermediate vertical lobe (IVL). We used SS01716-Split-GAL4 (ref. 22) to 
induce or image DAN-g1 activity in the lower vertical lobe (LVL), and we generated 
SS04268-Split-GAL4 to activate OAN-g1, also in the LVL. MB054B-Split-GAL4 (gift 
of G. Rubin and Y. Aso) was also used to coactivate DAN-g1 and DAN-f1. We used 
two lines to target DAN-d1 in the lateral appendix: MB143B-Split-GAL4 (used for 
activation and calcium imaging) and MB328B-Split-GAL4 (both gifts of G. Rubin and 
Y. Aso). In the medial lobe, we generated a broad line SS01948-GAL4, which allows 
coactivation of DAN-h1, DAN-i1, DAN-k1 and sometimes DAN-j1. We also imaged 
calcium transients in DAN-i17 using the more specific GAL4 SS00864-Split-GAL4.

Neurons presynaptic to the modulatory neurons (MBINs). We optogenetically 
activated multidendritic class IV neurons (MD IV) with the driver line ppk-1.9-
GAL48 (gift of D. Tracey), Basin interneurons with GMR72F11-GAL4 (ref. 26) 
and the ascending neuron A00c with GMR71A10-GAL4 (refs. 26,56) crossed to 
ppk-GAL80 (ref. 57) and repo-GAL80 (ref. 58) (to prevent expression in MD IV and 
glial cells, respectively). We also activated A00c with the more specific GAL4 line 
SS00883-Split-GAL4. We generated SS01778-Split-GAL4 and SS02181-Split-GAL4, 
which target FB2N-11 and/or FB2N-18. SS02108-Split-GAL4 targets FAN-7, and 
SS02401-Split-GAL4 targets FB2N-19.

Control lines. As a control for the GAL4 lines inserted at the attP2 site, we used the 
empty control stock y w;;attP2 (refs. 50,54) crossed to the effector line. As a control 
for Split-GAL4 lines with an activation domain (AD) at attP40 and a DNA-binding 
domain (DBD) at attP2, we used the empty stock y w;attP40;attP2 (refs. 50,54) 
crossed to the effector line.

Lines for recording neuronal activity. Calcium transients in modulatory neurons 
were imaged using the following constructs to verify functional input of mechano-
chordotonal neurons: w; iav-LexA (ref. 26) in attP40; 20xUAS-IVS-GCaMP6f 15.693 
(ref. 52) in attP2 and 13XLexAop2-CsChrimson-tdTomato (ref. 51) in VK00005; for 
Basins multisensory interneurons: w; GMR72F11-LexA (ref. 54) in JK22C, 20xUAS-
IVS-GCaMP6f 15.693 (ref. 52) at attP2 and 13XLexAop2-CsChrimson-tdTomato 
(ref. 51) at VK00005; and for MD class IV nociceptive neurons: w; 13XLexAop2-
CsChrimson-mVenus (ref. 51) at attP40 (BDSC 55138), ppk-1kb-hs43-lexA-GAD10 
at attP2 and 20xUAS-IVS-GCaMP6f (ref. 52) at VK00005. All of the effectors used in 
these stocks are a gift from V. Jayaraman. Transvection was tested by bathing some 
samples in 100 mM mecamylamine and observing the disappearance of responses 
to optogenetic stimulation (data not shown). If a response remained during 
mecamylamine application, the experiments were repeated using a  
spatially defined photostimulation using spatial light modulator technology  
(see “Functional connectivity assays” below for details of the procedure and  
the lines concerned).

For patch-clamp recording, we crossed the genetic driver lines for MBON-m1 
(SS02163-Split-GAL4) or for MBON-i1 (SS01726-Split-GAL4) to 58E02-LexAp65 at 
attP40 (ref. 59); 13xLexAop2-IVS-GCaMP6f-p10 15.693 (ref. 52) at VK00005 (BDSC 
44276) and 20xUAS-CsChrimson-mCherry (ref. 51) at su(Hw)attP1 to activate 
MBONs and visualize the medial lobe DANs for patch clamping. Only data for 
DAN-i1, which was the most frequently hit by the recording pipette, as revealed by 
post hoc identification, are shown.

The reporter pJFRC29-10xUAS-IVS-myr::GFP-p10 (ref. 60) at attP2 was used for 
immunostaining.

Learning experiments. Learning experiments were performed as previously 
described12,21,22. The larvae, with CsChrimson-expressing neurons, were reared in 
the dark at 25 °C in food vials supplemented with 1:200 retinal. The experimenter 
selected two groups of 30 third instar larvae and was blind to their specific genotype. 
The two groups underwent a training procedure involving odor and light exposures, 
either fully overlapping in time (paired group) or fully nonoverlapping (unpaired 
group). The paired group was placed for 3 min on 4% agarose plates and exposed 

to constant red light illumination (wavelength: 629 nm, power: 350 μW cm−2; except 
for ppk-1.9-GAL4, which targets neurons at the surface of the body and for which 
a light power of 35 μW cm−2 was used) paired with the presentation of 12 μl odor 
ethyl-acetate (10−4 dilution in distilled water) absorbed on two filter papers located 
on the plate lid. These larvae were then transferred to a new plate with no odor 
and in the dark for 3 min. This paired training cycle was repeated three times in 
total. The unpaired group of larvae underwent odor presentation in the dark and 
red light without odor following the same protocol. The order of the sequence of 
presentation for odor and light stimulation (that is for the paired group: half of the 
training protocols are in the sequence odor+/air−/odor+/air−/odor+/air− and half 
are air−/odor+/air−/odor+/air−/odor+, same logic for the unpaired group) was 
alternated throughout all experiments. After a 3-min test with odor presentation on 
one side of the plate lid, larvae were counted on the side of the odor, on the opposite 
side, and in the 1-cm-wide midline of the plate. Preference and performance indices 
were calculated as in a previous study61. In brief, a preference index (PI) was first 
computed for each group as: PI = [n (larvae on the odor side) − n (larvae on the 
no-odor side)]/N(total), where N(total) includes larvae in the middle of the plate. 
Individual learning performance score (LPS) was then computed for each pair of the 
reciprocally trained group, as LPS = [PI (paired) − PI (unpaired)]/2. Positive scores 
indicate a larger proportion of larvae choosing the odor side in the paired group 
than in the unpaired group (that is, appetitive olfactory memory), whereas negative 
scores indicate the reverse inequality (that is, aversive olfactory memory). Because 
we tested larvae immediately after the last training trial, and less than 20 min after 
the first training trial, we assume the test reveals mainly short-term memory15. 
Experiments were performed en block for multiple genotypes with the same control 
line, as shown in the figures. The same genotype was tested over multiple days at 
random times of the day.

Circuit mapping and EM. We reconstructed neurons and annotated synapses 
in a single, complete CNS from a 6-h-old female [iso] Canton S G1 × w1118 
[iso] 5905 larva, acquired with serial section transmission EM at a resolution 
of 3.8 × 3.8 × 50 nm3, which was first published along with the detailed sample 
preparation protocol26. In brief, the CNS was dissected and placed in 2% 
glutaraldehyde 0.1 M sodium cacodylate buffer (pH 7.4). An equal volume of 2% 
OsO4 was added, and the larva was fixed with a Pelco BioWave microwave oven with 
350-, 375- and 400-W pulses for 30 s each, separated by 60-s pauses, and followed 
by another round of microwaving but with 1% OsO4 solution in the same buffer. 
Next, samples were stained en bloc with 1% uranyl acetate in water and microwaved 
at 350 W for 3 × 3 for 30 s with 60-s pauses. Samples were dehydrated in an ethanol 
series, transferred to propylene oxide, and infiltrated and embedded with Epon resin. 
After sectioning the volume with a Leica UC6 ultramicrotome, sections were imaged 
semi-automatically with Leginon62 driving an FEI Spirit TEM (Hillsboro, OR, USA) 
and then assembled with TrakEM2 (ref. 63) using the elastic method64. The volume is 
available at https://l1em.catmaid.virtualflybrain.org/?pid=1.

To map the wiring diagram, we used the web-based software CATMAID65, 
updated with a suite of neuron skeletonization and analysis tools66, and applied the 
iterative reconstruction method66. All annotated synapses in this wiring diagram 
fulfill the four following criteria of mature synapses26,66: (1) there is a clearly visible 
T-bar or ribbon on at least two adjacent z sections; (2) there are multiple vesicles 
immediately adjacent to the T-bar or ribbon; (3) there is a cleft between the 
presynaptic and the postsynaptic neurites, visible as a dark–light–dark parallel line; 
and (4) there are postsynaptic densities, visible as dark staining at the cytoplasmic 
side of the postsynaptic membrane.

We validated the reconstructions as previously described26,66, a method 
successfully used in multiple studies26,27,30,66–68. In brief, in Drosophila, as in other 
insects, the gross morphology of many neurons is stereotyped, and individual 
neurons are uniquely identifiable based on morphology68–70. Furthermore, the 
nervous system in insects is largely bilaterally symmetric and homologous, with 
mirror-symmetric neurons reproducibly found on the left and the right side of 
the animal. We therefore validated neuron reconstructions by independently 
reconstructing synaptic partners of homologous neurons on the left and right 
sides of the nervous system. With this approach, we have previously estimated 
the false-positive rate of synaptic contact detection to be 0.0167 (1 error per 60 
synaptic contacts)21. Assuming the false-positive rates are uncorrelated, for an 
n-synapse connection the probability that all n are wrong (and thus that the entire 
connection is a false positive) occurs at a rate of 0.0167n. Thus, the probability that 
a connection is a false positive reduces dramatically with the number of synaptic 
contacts contributing to that connection. Even for n = 2 synaptic contacts, the 
probability that a connection is not true is 0.00028 (once in every 3,586 two-
synapse connections). We therefore consider ‘reliable’ connections those for which 
the connections between the left and right homologous neurons have at least three 
synapses each and their sum is at least 10. See Ohyama et al.26 and Schneider-Mizell 
et al.66 for more details.

We also systematically asked what percentage of connections was conserved 
between left and right homologs, as a function of the number of synapses in that 
connection. We did this for the 426 neurons that were presynaptic to MBINs on 
the left or the right. Thus, we found that if two neurons were connected with 
1, 2, 3, 4, 5, 6, 7, 8, 9 and 10 synapses on one hemisphere, the probability that 
homologous neurons are connected on the other hemisphere was 48%, 60%, 80%, 
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89%, 95%, 97%, 99%, 100%, 100% and 100%, respectively. We also computed the 
fraction of input that each MBIN received from each presynaptic neuron and 
found that if a presynaptic neuron accounted for 1.6%, 2%, 3%, 4% and 5% of a 
postsynaptic neuron’s input, then the likelihood that the homologous neurons 
were connected on the other hemisphere was 95%, 99%, 100%, 100% and 100%, 
respectively. Thus, numerically weak connections were not conserved, but 
numerically strong connections were 100% conserved. Interestingly, in previous 
studies we have demonstrated that in the numerically strong connections in which 
the postsynaptic neuron receives at least 2% of input, the presynaptic neurons were 
also functional26,27.

Thus, the numerically strong connections (that account for at least 2% of a 
postsynaptic neuron’s input) are reproducible between left and right hemispheres 
of the same individuals and across individuals, as evidenced by our functional 
connectivity experiments across individuals.

Immunostaining. Dissected brains were fixed in phosphate-buffered saline 
(PBS; NaCl 137 mM, KCl 2.7 mM, Na2HPO4 8.1 mM, KH2PO4 1.5 mM, pH 7.3) 
containing 4% paraformaldehyde (Merck) for 30 min at room temperature. After 
two 15-min washes with PBT (PBS with 1% or 3% Triton X-100; Sigma-Aldrich), 
the brains were blocked with 5% normal goat serum (Vector Laboratories) in PBT 
and incubated for at least 24 h with primary antibodies at 4 °C. Before application 
of the secondary antibodies for at least 24 h at 4 °C or for 2 h at room temperature, 
brains were washed several times with PBT. After that, brains were again washed 
with PBT, mounted in Vectashield (Vector Laboratories) and stored at 4 °C in 
darkness. Images were taken with a Zeiss LSM 710M confocal microscope. The 
resulting image stacks were projected and analyzed with the image processing 
software Fiji (ref. 71). Primary antibodies were used at the following dilutions: rabbit 
anti-GFP (catalog no. Af2020, 1:1,000; Frontier Institute), chick anti-GFP (ab13970, 
1:1,000; Abcam), rabbit anti-GABA (A2052, Sigma; 1:100) and mouse anti-ChAT 
(ChAT4B1, DSHB Hybridoma Product deposited by P.M. Salvaterra; 1:50). Rabbit 
anti-DVGlut72 was diluted 1:1,000. These antibodies were used in Drosophila larvae 
previously12,30. Secondary antibodies were used at the following dilutions: Alexa 
Fluor 568-conjugated goat anti-rabbit immunoglobulin G (IgG; A-11036, 1:300; 
Invitrogen Molecular Probes), Alexa Fluor 633-conjugated goat anti-mouse IgG 
(A-21050, 1:300; Invitrogen Molecular Probes) and Alexa Fluor 488-conjugated goat 
anti-chicken IgG (A-11039, 1:300; Invitrogen Molecular Probes).

Identifying GAL4 lines that drive expression in modulatory neurons and their 
presynaptic partners. To identify GAL4 lines (listed in Supplementary Table 
1) that drive expression in specific neurons, we performed single-cell FlpOut 
experiments (for FlpOut methodology, see Ohyama et al.26 and Nern et al.73) 
of many candidate GAL4 lines74. We generated high-resolution confocal image 
stacks of individual neuron morphology (multiple examples per cell type). Most 
MBONs and MBINs were uniquely identifiable based on the dendritic and axonal 
projection patterns (which MB compartment they project to and the shape of 
input or output arbor outside the MB). These were also compared with previously 
reported single-cell FlpOuts of DANs and OANs in the larva56,61,75–77. For the 
neurons upstream of MBINs (FBNs/FANs/FB2Ns), we used morphology and cell 
body position to identify the lineage of the neuron. The precise shape and three-
dimensional location of dendritic and axonal projections were then examined 
and compared with all potential candidates in the lineage, which have been fully 
reconstructed from the EM volume. In some cases, two neurons had very similar 
morphology at both light and EM level, and in such cases they also had nearly 
identical connectivity (for example, FB2N-11 and FB2N-18).

Functional connectivity assays. CNSs of third instar larvae were dissected in a 
cold buffer containing 103 mM NaCl, 3 mM KCl, 5 mM TES, 26 mM NaHCO3, 
1 mM NaH2PO4, 8 mM trehalose, 10 mM glucose, 2 mM CaCl2 and 4 mM MgCl2 
and adhered to poly-l-lysine (P1524; Sigma)-coated cover glass in small Sylgard 
(Dow Corning) plates.

For optogenetic activation, red illumination (617-nm High-Power Lightguide 
Coupled LED Source; Mightex) was positioned above the sample to depolarize the 
axon terminal parts of the sensory neurons (MD IV or chordotonal) or the second-
order interneurons (Basins). Light stimulations were performed with 1- or 15-s 
duration and in 40 and 600 cycles of laser on/off pulses of 20/5 ms. Each preparation 
underwent three types of light stimulation of increasing power: ~390, 920 and 
4.6 mW mm−2. Only the data for the highest light power during 1 s is displayed  
(Fig. 1f). The same stimulus was spaced with 30 s for a total of three presentations 
in each scan. Each scan consisted of imaging DANs on a two-photon scanning 
microscope (Bruker) using a 60× 3 1.1 numerical aperture objective (Olympus).  
A mode-locked Ti:Sapphire laser (Chameleon Ultra II; Coherent) tuned to 925 nm 
was used for photoactivation of the GCaMP6f. Fluorescence was collected with 
photomultiplier tubes (Hamamatsu) after band-pass filtering. Images were acquired 
in line scanning mode (5.15 frames s−1) for a single plane of the CNS. The same 
genotype was tested over multiple days at random times of the day. Data collection 
and analysis were not performed blind to the conditions of the experiments.

To overcome transvection observed between the transgenes at the attP40 
landing site of the MB143B-Split-GAL4 line (targeting DAN-d1) crossed to w; 
13XLexAop2-CsChrimson-mVenus (ref. 51) in attP40, ppk-1kb-hs43-lexA-GAD10 

in attP2 and 20xUAS-IVS-GCaMP6f2 in VK00005, we used three-dimensional 
spatially defined photostimulation. MD IV neurons expressing CsChrimson were 
photo-activated by a holographic pattern generated by a two-photon 1,040-nm 
laser (femtoTrain; Spectra-Physics) coupled to a phase-only spatial light modulator 
(Intelligent Imaging Innovations). GCaMP6f signal was imaged by a laser tuned to 
925 nm (Insight DS+ Dual; Spectra-Physics). The optogenetic stimulations were 
50 cycles of laser on/off pulses of 2 ms/18 ms, ranging from 1 to 1.5 mW mm−2. 
Off-target (equidistant from the Chrimson-expressing DAN-d1 neuron, but not 
targeting Chrimson-expressing MD IV neurons) and on-target stimulations were 
alternatively performed, and the difference between transvection-only-generated 
calcium signals and transvection + MD IV neuron activation-generated signal was 
computed and used as the fluorescence signal. DAN-d1 neurons were imaged at a 
frame rate of ~5 frames s−1 on a two-photon scanning microscope (Vivo; Intelligent 
Imaging Innovations) using a 25× 2 1.1 numerical aperture objective (Nikon).

For image analysis, image data were processed by Fiji software71 and analyzed 
using a custom code in Matlab (The Mathworks, Inc). Specifically, we manually 
determined the regions of interest from maximum intensity projection of entire 
time-series images and measured the mean intensity. In all cases, changes in 
fluorescence were calculated relative to baseline fluorescence levels (F0) as 
determined by averaging over a period of at least 2 s just before the optogenetic 
stimulation. The δF/F0 values were calculated as 0F/F0 = (Ft − F0)/F0, where Ft is 
the fluorescent mean value of a region of interest in a given frame. Analyses were 
performed on the mean δF/F0 of the consecutive three stimulations.

Whole-cell patch-clamp recordings from DANs on optogenetic activation 
of MBONs. For recording, the isolated brain attached with ventral nerve 
cord was dissected from third instar larvae in Baines external solution78, 
which contained: 135 mM NaCl, 5 mM KCl, 2 mM CaCl2, 4 mM MgCl2, 5 mM 
2-((2-hydroxy-1,1-bis(hydroxymethyl)ethyl)amino) ethanesulfonic acid, 5 mM 
N-(Tris(hydroxymethyl) methyl)–2-aminoethanesulfonic acid and 36 mM sucrose. 
The pH was adjusted to 7.15 with NaOH, and osmolarity was 310–320 mOsm. 
The preparation was viewed with a 60× 1 numerical aperture water-immersion 
objective equipped with an Olympus microscopy (BX51WI; Olympus). GCaMP6f-
labeled DANs were visualized with a 470-nm-wavelength LED. The glial sheath 
above the targeted DANs was ruptured using 0.1% protease (Protease XIV; Sigma-
Aldrich). Recording electrodes were pulled from thick-walled glass pipette (outer 
diameter, 1.5 mm; inner diameter, 0.86 mm) using P-97 puller (Sutter Instruments) 
and fire polished to resistances of 10–15 Mω. The Baines intracellular solution78 
contained: 140 mM potassium gluconate, 5 mM KCl, 2 mM MgCl2, 2 mM EGTA 
and 20 mM HEPES. The pH was adjusted to 7.4 with KOH, and the osmolarity 
was 280 mOsm. Biocytin was dissolved in intracellular solution at 0.5% for further 
post hoc morphological identification of recorded DANs. The data were acquired 
and processed using Digidata 1550, Multiclamp 700B and Clampex 10.4 software 
(Molecular Devices). The recording was sampled at 20 kHz and filtered at 6 kHz 
under current-clamp mode. CsChrimson was activated by 617-nm-wavelength 
light-emitting diode.

For DAN identification, after the electrophysiology recording, the preparation 
containing the ventral nerve cord and brain was fixed in 4% paraformaldehyde 
in 0.1 M PBS overnight at 4 °C and then transferred to PBS until staining. After 
rinsing in PBS, the CNS preparations were placed in Streptavidin Alexa Fluor 647 
(1:200) in PBS with 10% Triton X (overnight, room temperature). After rinsing, 
the preparations were dehydrated and mounted with dibutylphthalate polystyrene 
xylene (DPX). The confocal images were captured with Zeiss 800 confocal laser 
microscope. Alexa Fluor 647 was excited with 633-nm-wavelength light, and 
mCherry-tagged CsChrimson neurons were excited with 567-nm-wavelength light.

Statistics. Because most fluorescence and behavioral data were nonnormally 
distributed (according to a Shapiro–Wilk test), we opted for nonparametric tests 
for paired comparisons. Similarly, for the model, we used a nonparametric test to 
compare performance. No statistical methods were used to predetermine sample 
sizes, but the sample sizes are similar to those reported in previous publications22,27,41.

For behavioral experiments, the performance scores obtained for each 
line tested in optogenetic reinforcement were compared with the ones of its 
corresponding empty line (that is, w;;attP2 or w;attP40;attP2 for GAL4 or Split-
GAL4, respectively) using a nonparametric Mann–Whitney U test for independent 
sets of data. For multiple comparisons, the probability values were compared with 
a threshold of 0.05 adjusted with a Holm–Bonferroni correction to balance for 
type I and type II statistical errors, unless otherwise stated. Across GAL4 lines, 
comparisons of performance scores were done using the same methodology. 
Data were plotted using the Matlab script errorbarjitter, available at http://www.
mathworks.com/matlabcentral/fileexchange/33658-errorbarjitter.

Fluorescence analyses were done using a nonparametric Wilcoxon test for 
paired comparisons between the maximum δF/F0 plus one standard deviation 
during 1 s before photostimulation onset and the maximum δF/F0 at two time 
windows: during the 1 s of the stimulation and from 1 to 3 s after its onset.

For the clustering analysis, we looked for clusters among FBNs/FANs based 
on the similarity of their synaptic partners separately for input and output. To 
find clusters based on synaptic inputs, we defined the similarity between a pair 
of FBN/FANs as the cosine similarity of the vector of inputs they receive from 
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MBONs, where the weight of a given connection is measured as the fraction of 
total input synapses on the postsynaptic neuron. Specifically, for vi and vj being 
the input vectors for FBN/FANs i and j, the similarity between them is defined as: 
Sij ¼ vi vj

kvikkvjk
I

. Hierarchical clustering on the similarity matrix was done with  
Scipy using average linkage. We chose the top five clusters to highlight, which 
included all clearly differentiated groups of FBN/FANs. Clustering on the output 
patterns was done identically using the vectors of connectivity from FBN/FANs 
onto MBINs.

For the input-clustered groups, we assessed the similarity of the patterns 
of synaptic outputs and vice versa for the synaptic input patterns for output-
clustered groups. We measured the overall group similarity as the median of 
all unique pairwise cosine similarities between neurons within the group. We 
used a permutation test to assess the significance of the observed similarities by 
randomizing the relationship between input pattern and output pattern for each 
FAN/FBN. For example, for each input-clustered group of size n, we randomly 
chose n output patterns and computed their median output similarity in the  
same way. A one-sided P value was computed from the distribution of 10,000 
random permutations with a Holm–Sidak correction for multiple comparisons 
across the groups.

Rate model of the MBON-i1-FBN-7-DAN-i1 one-step feedback motif. To 
illustrate the potential effects of different FBN-baselines, we modeled the isolated 
MBON-i1-FBN-7-DAN-i1 feedback motif shown in Fig. 4b with rate equations, 
where the output of neuron type (MBON, FBN, DAN) changed over time 
according to the equation:

τi
dri
dt

¼ �ri þ f
X

j

wijrj þ Itonici

 !
þ Istimi

where f ðxÞ ¼ s
1þe�kðx�xh Þ

I
, W is a matrix with positive and negative values 

corresponding to the direct interactions between neurons as shown in the circuit 
schematic of Fig. 4b, Itonici

I
 is a nonnegative tonic input into neuron i, Istimi

I
 is a 

stimulus input provided only to MBON, τi is a time constant and parameters s, k 
and xh set the shape of the sigmoidal response. Equations were solved using ode45 
in Matlab (The Mathworks, Inc.; see Supplementary Fig. 3).

Connectivity-constrained model of the entire MB with the feedback neurons. 
Model dynamics. We constructed a recurrent network model of the larval MB 
containing MBONs, DANs and other feedback neurons. The network receives 
input from 70 KCs and external cues, such as US. The normalized firing rate ri of 
neurons i is modeled as a threshold-linear function of its input:

dri
dt

¼ �riðtÞ þ g
X

j

WijrjðtÞ þ bi þ IiðtÞ
 !

ð1Þ

where g represents positive rectification. Time is modeled in units of effective 
time constant (representing combined synaptic and membrane timescales). The 
connectivity matrix Wij is constrained using the EM reconstruction. The vector 
bi represents the static bias input to each neuron that determines its excitability, 
whereas Ii(t) represents time-varying external input. For MBONs, this includes 
external input from KCs, IiðtÞ ¼

P
k W

KC
ik rKCk

I
.

KCs are initially silent, but during the presentation of an odor CS, the activity 
of a random fraction f of KCs is set to 1, leading to MBON activation. We assume 
all-to-all KC-to-MBON connectivity. At the beginning of each trial, weights WKC 
are initially set equal to their maximum value of 1∕(NKCf) but are modified on each 
timestep according to a DAN-dependent synaptic plasticity rule. A weight W(t) 
from KC k to an MBON in compartment i evolves according to:

dw
dt

¼ �rkdi þ rkdi ð2Þ

τW
dW
dt

¼ wðtÞ �WðtÞ ð3Þ

where di represents the level of dopamine in the compartment (a weighted sum 
of DAN inputs according to the DAN-to-MBON connectivity matrix), and rk 
represents the firing rate of the KC (note that modifications of weights onto 
MBONs depend only on KC and DAN activity). The terms rk and di represent 
the firing rate rk and dopamine level di, respectively, low-pass filtered with time 
constant τ, which leads to an anti-Hebbian timing-dependent synaptic weight 
update in equation (2). Equation (3) results in W(t) following these updates with a 
time constant of τW. For simplicity, we assume that all modulatory neurons induce 
plasticity according to this rule.

Given the model dynamics described earlier, we use gradient descent 
optimization to find a set of network parameters that lead to good performance 
on the tasks we consider. After this optimization, KC-to-MBON weights are 
still time-varying quantities that evolve according to equation (3), but all other 
parameters are fixed. Weights among DANs, MBONs and feedback neurons 
are constrained by the EM reconstruction. Weight matrices are initialized using 

synapse counts from the EM data, scaled so that the ℓ2 norm of the inputs received 
by each neuron 

P
j W

2
ij ¼ 1:5

I
. Only reliable connections, as defined previously, 

are included. Weights from neurons known to communicate using an inhibitory 
neurotransmitter are then multiplied by −1. As optimization progresses, weights 
from neurons of known neurotransmitter identities are constrained to maintain 
a consistent sign by clipping at 0. Weights that were initialized to nonzero values 
rarely decayed to zero during optimization (7 ± 1% of weights, using a cutoff of 
10% of each weight’s initial value to determine whether it has decayed). At the 
beginning of a trial, MBON rates are initialized to 0, whereas DAN and feedback 
neuron rates are initialized to 0.1. This promotes networks in which MBONs are 
primarily odor driven, but some DANs and feedback neurons exhibit baseline 
levels of activity.

Tasks. Neuron i’s external input Ii(t) represents either KC input in the case of MBONs 
(as described earlier), or US or contextual signals (depending on the task) in the case 
of DANs and FB neurons. We assume that IiðtÞ ¼ WE

j ejðtÞ
I

, where WE is initialized as 
a random standard Gaussian variable and ej(t) = 0 or 1 depending on whether signal j 
is active. For most tasks, there are two signals (positive or negative US).

A linear readout of the MBONs determines the valence of the currently 
presented odor via vðtÞ ¼

P
i2MBON WM

i ri
I

, where WM is initialized as a random 
Gaussian variable with variance 1∕NMBON. Entries of WM corresponding to MBONs 
whose activation is known to produce approach or avoidance are constrained to be 
consistent with this sign.

Trials consist of 80 time units. In a first-order conditioning trial, a CS+ is 
presented for 3 time units starting randomly between t = 5 and t = 15, followed 
by a positive or negative US with a delay of 2 time units. A test CS+ presentation 
occurs between t = 65 and t = 75, and the system must output the appropriate 
valence of +1 or −1 depending on the US valence during this second presentation. 
For extinction, an additional CS+ presentation occurs randomly between t = 35 
and t = 45, and the magnitude of the valence is halved for the final test CS+ 
presentation. For second-order conditioning, a new CS2 is presented at this time, 
followed by the original CS+, and the test occurs for CS2. Finally, for context-
dependent conditioning, a contextual signal that determines the US valence is 
presented 3 time units before the first CS. At t = 30 and t = 60, firing rates are 
reset to their initial conditions to model an arbitrary time delay between CS 
presentations and preventing networks from using persistent activity, rather than 
synaptic plasticity, to maintain associations.

For networks trained on first-order conditioning, second-order conditioning and 
extinction, training consists of random second-order conditioning and extinction 
trials (for which first-order conditioning is a subcomponent). On each trial, there is 
a 50% probability that one of the signals (for example, the US) will be omitted, or a 
CS− odor will replace a CS+ odor, and the network will report a valence of 0 in these 
cases, ensuring that only valid CS–US contingencies are learned.

Optimization. The weights of the network W, the external and readout weights WE, 
WM and the biases b are optimized using PyTorch using the RMSprop optimizer 
(https://pytorch.org/). Optimization proceeds over 1,500 epochs, each of which 
consists of a batch of 30 trials that are used to evaluate the loss function that is 
minimized through gradient descent. The loss is equal to the squared distance 
between the actual and target valence summed over timesteps, plus a regularization 
term for DAN activity. The regularization term equals 

P
t;i2DAN ½riðtÞ � 0:12þ

I
, 

which penalizes DAN activity that exceeds a baseline level of 0.1. This suppresses 
task-unrelated DAN activity and produces more realistic activity patterns in the 
DANs, but our results do not qualitatively change if this regularization is removed. 
We used a timestep of Δt = 0.5, although we verified that our qualitative results 
hold for smaller timesteps.

Parameter Notation Value

KC coding level f 0.1
Maximum KC-to-MBON synaptic 
weight

wmax
I

1∕(NKCf)

Timing-dependent plasticity 
window

τ 5

Timescale of weight modifications τW 5
Initial MBON rate m0 0
Initial DAN rate d0 0.1
Initial FB neuron rate x0 0.1
CS–US presentation length Tstim

I
3

CS–US delay ΔTUS 2
Trial length T 80
Timestep Δt 0.5
RMSprop learning rate η 0.002
Batch size B 30

Number of epochs nepochs 1,500
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Data availability
The source data and statistics for Fig. 1 are available in Source Data Fig. 1.  
The EM volume of the whole CNS26 and the reconstructed neurons and 
synapses included in this paper are publicly available at https://l1em.catmaid.
virtualflybrain.org/, accessible online thanks to the software CATMAID65,66, the 
same software used to reconstruct and analyze the neuronal circuits included 
here. Supplementary Adjacency Matrices 1, 2 and 3 contain all the connectivity 
information for all neurons from the extended MB network discussed in the study. 
The light microscopy image stacks of genetic driver lines are available from the 
corresponding authors upon reasonable request.

Code availability
Python code (used for the model in Fig. 7) and Matlab code (used for 
Supplementary Fig. 3b) can be found in Supplementary Software. The Matlab code 
for the analysis of imaging and behavioral data is available from the corresponding 
author upon reasonable request.
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Extended Data Fig. 1 | Expression patterns of Split-GAL4 lines. Each panel shows a representative confocal maximum intensity projection (out of N=3) 
of the complete CNS of third-instar larvae (indicated by the dotted line in the first panel), with the neuropil labeled with anti-N-Cad antibody (blue) and the 
Split-GAL4line expression pattern revealed with UAS-myr-GFP (green). Arrowheads indicate cell bodies of identified neurons.
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Extended Data Fig. 2 | Detailed characterization of associative memories formed through different kinds of ‘optogenetic punishments’ or ‘optogenetic 
rewards’. Preference scores are shown for the trained odor, ethyl acetate, when it was paired (paired group, closed circles) or not paired (unpaired group, open 
circles) with optogenetic punishments or rewards. These Preference scores are used to compute the Learning Performance Scores as shown in Fig. 1c,e and 
6a-c, additional testing conditions are also shown here. With some natural punishments, aversive memory is behaviorally expressed by trained Drosophila 
larvae only if the punishment is present at the moment of the test16. Here we assayed olfactory aversive memories in two ways: both with or without 
optogenetic punishment (red and black bars, respectively) during the retention test. Odor preference was decreased and increased, respectively, relative to 
genetic controls, after pairing the odor with the presence and absence of the following optogenetic punishments: co-activation of the aversive DAN-f1 and 
DAN-g1, co-activation of DAN-f1 and DAN-c1, or activation of Basins. Aversive memory formed by DAN activation (green) or by Basins activation (blue) was 
expressed to the same extent with or without the DANs activated during the retention test. However, memory evoked by the activation of nociceptive MD IV 
neurons (orange) or FB2N-19 (yellow) was fully expressed only if these neurons were active again during the retention test. Odor preference was increased 
and decreased, respectively, relative to genetic controls, after pairing the odor with the presence and absence of the following optogenetic rewards: the 
co-activation of DAN-h1, -i1, and -k1 (dark green); the activation of FB2N-18 and FB2N-11 (yellow), or activation of FAN-7 (blue-gray). Thus, both absence of 
odor in the unpaired group of animals, as well as the presence of odor in the paired group of animals can be associated with the activation of some DANs 
or some of their afferent neurons. These results suggest that presenting an odor unpaired with the activation of some of these DANs induces memory of 
opposite valence to the paired presentation. For other DANs or afferent neurons, only paired (for example A00c, purple) or only unpaired (for example the 
modulatory DAN-f1, the nociceptive MD IV sensory neuron, or FB2N-19) contingency significantly affected odor preference with respect to the control 
group. Either of these two observed types of effects can contribute to the negative or positive learning performance indexes plotted in Fig. 1c,e and 6a-c. 
Sample sizes: N = 42, 11, 17, 16, 12, 14, 12, 13, 12, 16, 12, 14, 12, 12, 15, 14, 12, 11, 14, 13, 12, 14, 11, 11, 11, 18, 11, 20, 25, 33, 52,14, 21, 14, 14, 18, 18, 31, 52, 27, 11,11, 
10, 13, 20 (control groups in bold). Mean and standard deviations are shown. Black *: p-value<Holm-Bonferroni-adjusted threshold for 0.05 from a two-sided 
Wilcoxon signed rank test comparison between paired and unpaired group. Grey *: p-value<Holm-Bonferroni-adjusted threshold for 0.05 from a two-sided 
Mann-Whitney U test comparison between the preference scores for a given group (paired or unpaired) and the preference scores (for paired or unpaired 
protocol, respectively) obtained by the control line shown on the left of each set of data. Exact p-values are available in Source Data Fig. 1.

Nature Neuroscience | www.nature.com/natureneuroscience

http://www.nature.com/natureneuroscience


Articles NAturE NEurOSCiEnCEArticles NAturE NEurOSCiEnCE

Extended Data Fig. 3 | Matrix of similarity between modulator neurons based on the amount of common input. We computed the cosine similarity 
of the connectivity matrix of row input neurons onto column modulatory neurons, which is the dot product of the rows, divided by the multiplication of 
the norm of each row. An input here is a connection, consisting typically of many synapses, from a specific cell type onto the modulatory neuron. Inputs 
onto a modulatory neuron are considered if the pair of left and right neurons presynaptic to the pair of left and right modulatory neurons is each above 
a threshold of 1% (for example the presynaptic neuron makes 3 synapses onto a neuron with 300 postsynaptic sites) and the sum of both is over 3.3% 
(for example the sum of both connections is above 10 synapses for receiving neurons with 300 postsynaptic sites). Interestingly, functionally similar 
DANs, whose activation leads to aversive memory for paired odors share a higher fraction of presynaptic partners with each other than with other DANs. 
By contrast some modulatory neurons that innervate the same compartment but express different neurotransmitters (for example OAN-g1 and DAN-
g1) receive inputs from drastically different subsets of pre-modulatory neurons. Such modulatory neurons that innervate the same compartment could 
therefore be differentially recruited during learning. Interestingly though, OAN-e1 and MBIN-e2 in the UVL, whose activation paired with odor did not in-
duce memory in our paradigm and that were not significantly activated by fictive punishments share a higher fraction of their input with the VL/LA DANs 
than with other modulatory neurons. This raises the possibility that the UVL modulatory neurons may be recruited by similar stimuli to the VL/LA DANs, 
but only in specific circumstances.
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Extended Data Fig. 4 | Input onto feedback neurons. Figure shows the fractions of total dendritic input each pre-modulatory neuron (FBN, FB2N or FFN) 
receives from KCs, modulatory neurons, MBONs, FBNs, FB2Ns, FFNs, and from other non-MB neurons (others). a FBNs receive on average 12% of their 
inputs directly from MBONs and most of them also receive inputs from other FBNs, with an average of 26% from MBONs and other FBNs combined (see 
also Supplementary Figure 4a). b FB2Nsreceive inputs both from FBNs (on average 17%) and from other FB2Ns (on average 28% from FBNs and FB2Ns 
combined).Many feedback neurons also receive a significant fraction of input from other unknown neurons from other brain areas (other than MB), 
suggesting that the feedback about the learnt valences of stimuli is integrated with or modulated by other information. c Tables show percent of inputs 
onto FBNs (top) and FB2Ns (bottom) from MBONs, FBNs, FB2Ns, FFNs, modulatory neurons and Kenyon cells.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | (related to Fig. 3a) Modulatory neurons receive convergent one-step feedback from multiple MBONs from functionally distinct 
compartments. Connectivity of each of the 40 feedback neuron (FBN) pairs that provide one-step feedback from MBONs to DANs. Each diagram 
represents the connectivity of a single left-right pair of homologous FBNs. Each box indicates a separate compartment. Purple, compartment(s) of the 
presynaptic MBON(s). Green, compartment(s) of the postsynaptic modulatory neuron(s). FBNs are ordered according to the modulatory neuron they 
innervate, starting with peduncle modulatory neurons and ending with the medial lobe ones. Classical neurotransmitter profiles of the MBONs and 
FBNs are indicated by the arrow (cholinergic, excitatory connection), vertical line (GABAergic, inhibitory connection) or square (glutamatergic, probably 
also inhibitory connection) for the neurons for which they are known from immunostaining (For images, see Extended Data Fig. 9 for FBNs and ref. 
12 for MBONs), or by a circle when they are unknown. 7 FBNs provide exclusively within-compartment feedback. 13 FBNs provide exclusively cross-
compartment feedback (named Connectivity of each of the 40 feedback neuron (FBN) pairs that provide one-step feedback from MBONs to DANs. Each 
diagram represents the connectivity of a single left-right pair of homologous FBNs. Each box indicates a separate compartment. Purple, compartment(s) 
of the presynaptic MBON(s). Green, compartment(s) of the postsynaptic modulatory neuron(s). FBNs are ordered according to the modulatory neuron 
they innervate, starting with peduncle modulatory neurons and ending with the medial lobe ones. Classical neurotransmitter profiles of the MBONs 
and FBNs are indicated by the arrow (cholinergic, excitatory connection), vertical line (GABAergic, inhibitory connection) or square (glutamatergic, 
probably also inhibitory connection) for the neurons for which they are known from immunostaining (For images, see Extended Data Fig. 9 for FBNs and 
ref.12 for MBONs), or by a circle when they are unknown. 7 FBNs provide exclusively within-compartment feedback. 13 FBNs provide exclusively cross-
compartment feedback (named FANs, for feed-across). 8 FBNs synapse onto multiple modulatory neurons from multiple compartments. The largest 
class of FBNs (17) receives input from multiple MBONs, with the majority (at least 13) receiving input of potentially opposite sign from MBONs from 
functionally distinct compartments. More than a quarter of FBNs (at least 12) receive direct GABAergic(inhibitory) or glutamatergic (also potentially 
inhibitory) input from MBONs from one compartment and direct cholinergic(excitatory) input from MBONs from a functionally distinct compartments 
enabling them to compare the odor drive to these MBONs. Many DANs (DAN-f1, d1, i1, j1, and k1) receive potentially inhibitory (excitatory FBN 
downstream of an inhibitory MBON) one-step feedback from MBONs from one compartment and potentially disinhibitory (inhibitory FBN downstream 
of an inhibitory MBON) or excitatory (excitatory FBN downstream of an excitatory MBON) one-step feedback from MBONs from a functionally distinct 
compartment. A common pattern for the lobe DANs implicated in memory formation may be a likely inhibitory connection from an MBON from their own 
compartment and a likely disinhibitory connection from an MBON from a compartment of opposite valence (observed for both DAN-g1 and i1), that could 
enable these DANs to compare the odor drive to MBONs from compartments of opposite valence.
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Extended Data Fig. 6 | Clustering FBNs based on input from MBONs. a Heat map of FBN similarity based on the pattern of FBN synaptic inputs from 
MBONs. The similarity between a pair of FBNs was computed as the cosine similarity between the vectors of their normalized synaptic inputs from all 
MBONs. Indices were ordered by agglomerative clustering with average linkage (dendrogram shown at top). We highlight six groups of FBNs defined by 
similarities in their input patterns (bold lines in dendrogram, numbered). b Heat maps showing patterns of input from MBONs onto FBNs for the input 
groups highlighted in a. In all cases, connectivity is measured in a Heat map of FBN similarity based on the pattern of FBN synaptic inputs from MBONs. 
The similarity between a pair of FBNs was computed as the cosine similarity between the vectors of their normalized synaptic inputs from all MBONs. 
Indices were ordered by agglomerative clustering with average linkage (dendrogram shown at top). We highlight six groups of FBNs defined by similarities in 
their input patterns (bold lines in dendrogram, numbered). b Heat maps showing patterns of input from MBONs onto FBNs for the input groups highlighted 
in a. In all cases, connectivity is measured in normalized synaptic input on the postsynaptic neuron. Most input groups receive dominant input from a 
single specific MBON (Groups 1,2, 5) or small group of MBONs (Groups 3 and 4), while Group 6 is not well-clustered and contains a variety of dissimilar 
input patterns. c Heat maps showing the patterns of synaptic output from FBNs to modulatory neurons for the input groups highlighted in a. d The 
observed similarity in the output patterns between FBNs within each group, compared to shuffled data. For each group clustered by input pattern, we 
computed the observed median of cosine similarity of the output vectors across all pairs of neurons (red line). In Groups 1,2, and 3, the neurons clustered 
by inputs had more similar output patterns than would be expected by chance. To determine significance, we compared the observed similarity to the 
distribution of the median cosine similarity for randomly permuted samples from the observed population of input vectors (black histograms, n=10000 
randomized trials) with a one-sided permutation test. A Holm-Sidak correction was applied to p-values to correct for multiple comparisons. n.s.: p>0.05.
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Extended Data Fig. 7 | Clustering FBNs based on output onto modulatory neurons. a Heat map of FBN similarity based on the pattern of FBN synaptic 
output across all modulatory neurons. The similarity between a pair of FBNs was computed as the cosine similarity between the vectors of normalized 
synaptic output onto all modulatory neurons. Indices were ordered by agglomerative clustering with average linkage (dendrogram shown at top). We 
highlight six groups of FBNs defined by similarities in their output patterns (bold lines in dendrogram, numbered). b Heat maps showing patterns of synaptic 
output from FBNs to modulatory neurons for output groups highlighted in a. Each group corresponds to several FBNs strongly targeting one or a small 
number of modulatory neurons, suggesting that some modulatory neurons are more strongly modulated than others. c Heat maps showing patterns of 
input onto FBNs from MBONs for the output groups highlighted in a. d The observed similarity in the input patterns between FBNs within each group, 
compared to shuffled data. For each group (as defined by output patterns), we computed the observed median of cosine similarity of the input vectors 
across all pairs of neurons (red line). In Groups 1-5, the neurons clustered by outputs had more input output patterns than would be expected by chance. 
To determine significance, we compared the observed similarity to the distribution of the median cosine similarity for randomly permuted samples from 
the observed population of input vectors (black histograms, n=10000 randomized trials) with a one-sided permutation test. A Holm-Sidak correction was 
applied to p-values to correct for multiple comparisons. n.s.: p>0.05.
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Extended Data Fig. 8 | Direct MBONs to modulatory neuron connectivity is very sparse, in contrast to the very dense connectivity via one-and two-
step feedback pathways. a Connectivity matrix showing normalized synaptic input (expressed as % input) each modulatory neuron (columns) receives 
from each MBON (rows). Only reliable connections for which the postsynaptic neuron receives at least 1% of input from the presynaptic neuron are 
shown. When the neurotransmitter of the MBON is known, the circle is color-coded to represent type of connection: excitatory (ChAT) or probably 
disinhibitory (GluT). Color shades represent the valence of the memory formed in a given compartment (red: aversive memory, blue: appetitive memory). 
True within-compartment feedback connections from an MBON that receives direct synaptic input from that modulatory neuron are boxed in bold. 
Very few modulatory neurons receive direct input from MBONs, in contrast to the dense connectivity between MBONs and modulatory neurons via the 
indirect one- and two-step feedback pathways (b). b Connectivity matrix showing indirect connections between MBONs and modulatory neurons via 
one-step and/or two-step feedback pathways. The matrix was obtained by summing the matrices from Fig. 3b and Fig. 5e. The color indicates the type of 
indirect connection existing between a given MBON and a given DAN. Bubble size represents a connectivity index computed as in Fig. 3b and Fig. 5e. A 
connectivity index of 1 or 10 means that for all connections comprising that indirect feedback pathway the presynaptic neuron accounts for 1% and 10% 
of input onto that postsynaptic neuron, respectively. One- and two-step feedback drastically increases the connectivity between MBONs and modulatory 
neurons, compared to direct connections (a).
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Extended Data Fig. 9 | Identification of neurotransmitters expressed in some FBNs/FB2Ns. Neurotransmitter expression detected in neuron somata 
using antibody labelling. We identified GAL4 lines that drive gene expression in some of the FBN or FB2N neurons and used them to express GFP in these 
neurons. We stained central nervous systems with antibodies against GFP and either ChAT (choline acetyltransferase), GABA (gamma aminobutyric acid) 
or GLUT (vesicular glutamate transporter).Each row shows from left to right: the name of the individual neuron, anti-GFP (green), anti-ChAT (magenta), 
and both antibody stainings combined; anti-GFP (green), anti-GABA (magenta), and both antibody stainings combined; anti-GFP (green) and anti-GLUT 
(magenta), and both antibody stainings combined. Whether a cell is cholinergic, GABAergic or glutamatergic is listed at the beginning of each row 
under the neuron name. Images show confocal maximum intensity projections of specific neuronal cell bodies. At least two replicates were obtained per 
genotype. Scale bars: 5μm.
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Extended Data Fig. 10 | (related to Fig. 6) Identification of driver lines for EM-reconstructed Feedback neurons. We were able to generate Split-GAL4 
lines that drive expression in a single pair of neurons, or in very few cell types, for three different pairs of FBNs or FB2Ns that target VL DANs (a-c). 
We used these lines to optogenetically activate these neurons instead of a US during an associative learning paradigm (Fig. 6). i) Skeletons of specific 
feedback neurons reconstructed in the EM. Red dots, presynaptic sites. Blue dots, postsynaptic sites. Grey, mushroom body vertical lobe (MB vl) for 
reference. d, dendritic arbor. ii) Maximum intensity projections of confocal stacks of larval brains showing the same neurons visualized with reporters 
targeted using specific Split-GAL4 lines. For some lines multicolor flp-outs were used to visualize each neuron in a different color to facilitate identification 
and comparison with EM (N=1). Grey, neuropil visualized with N-cad. Dashed line, brain outline. iii) Maximum intensity projections of confocal stacks of the 
entire nervous system showing the complete expression pattern of each line revealed by driving UAS-myr-GFP. Grey, neuropil visualized with N-cad. Dashed 
line, nervous system outline. Representative image from N=3. a, The SS02401-Split-GAL4 line drives expression in FB2N-19 (i) in the brain (ii), and very 
weakly and stochastically (not reproducibly in all samples) in a few ascending neurons and ensheathing glia in the nerve chord (iii). b, The SS02108-Split-
GAL4 line drives expression in FAN-7 and MB2ON-86 (i) in the brain visualized with multicolor flp-outs in (ii). Complete expression pattern of SS02108-
Split-GAL4 visualized with UAS-myr-GFP shows additional expression in a few somatosensory interneurons in the nerve cord, called ladders, that mediate 
avoidance behavior and are hence unlikely to have a positive valence and evoke the appetitive memory observed in Fig. 6b. We identified the SS04330-
Split-GAL4 line as driving expression specifically in the MB2ON-86 neuron and used it as an additional control in Fig. 6b. c, The SS01778-Split-GAL4 line 
drives expression in both FB2N-18 and FB2N-11, which have very similar morphology and very similar connectivity (Supplementary Figures 3 and 4b-d). 
The SS02181-Split-GAL4 line (ii shows multi-color flp-outs) drives expression in FB2N-18 and in MB2IN-207, one of the weakly connected pre-modulatory 
neurons from lineage DAMv12. Notice the ventrally projecting dendrite (d), a distinctive feature of MB2IN-207 neuron (i). UAS-myr-GFP expression 
patterns of the two lines show that they do not drive expression in any other neurons in the nerve cord (iii).
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Fiji 1.0 (http://fiji.sc), CATMAID (http://github.com/catmaid/catmaid/), PyTorch (1.1.0. https://pytorch.org/)

Data analysis R 3.5.3 (https://www.r-project.org/), Matlab R2017a (The Mathworks, Inc) and CATMAID's built-in analytical tool trackEM2 were used to 
analyse connectome data. Matlab R2017a was also used to analyze behavioral, imaging data. Fiji 1.0. was used to analyze imaging data. 
Clampex 10.4 was used to analyse electrophysiological data. Hierarchical clustering on the similarity matrix was done with Scipy. Model 
used Python 3.7.3 (https://www.python.org/) and PyTorch 1.1.0.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

All electron microscopy data is available online, e.g. at the NeuroData.io website and the Virtual Fly Brain website (http://www.virtualflybrain.org/site/vfb_site/ 
home.htm).  
The confocal stacks are available from the HHMI Janelia resource website.  
Raw behavioral and imaging data is provided as supplementary data.
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size For behavioral experiments, sample size is between 11 and 16. This sample size is used in similar studies and is sufficient to reach significance 
with the non-parametric tests we use (e.g. Saumweber et al, 2018). Empty lines were used as a negative controls and were generally tested at 
least once every day. The lines ppk1.9-GAL4 and 72F11-GAL4 were used as positive controls and were tested regularly throughout the 
screening and thus reached higher sample size. 
For calcium imaging experiments, sample size is between 5 and 14 for most dataset. This sample size is sufficient to reach significance with 
non-parametric tests and is commonly used in other imaging studies testing functional connectivity (e.g. Felseberg et al., 2017). A first batch 
of experiments was performed with three crosses (OAN-e1-, MBIN-e2- or DAN-f1-SplitGAL4 > UAS-GCamp6f / ppk1.9-LexA > LexAop-
CsChrimson), and repeated later together with the rest of crosses, and were pooled, thus reaching a higher sample size. 
The sample size for patch-clamp recording is between 3 and 9, similar to other studies (e.g. Jovanic et al, 2016).

Data exclusions The data obtained from calcium imaging with a specific cross (DAN-g1-SplitGAL4 > UAS-GCamp6f / ppk1.9-LexA > LexAop-CsChrimson) was 
excluded following the discovery of transvection in that cross and was regenerated using a method for spatially defined optogenetic 
stimulation, as described in the methods. 
These exclusion criteria were pre-established.

Replication Behavior: When available, we tested many driver lines that drove expression in the same neurons: DAN-f1, DAN-d1, FB2IN-18, as seen in 
Figure 1c and 6h. Only attempts at replication that were successful are shown. Data that were not reproducible with driver lines covering the 
same neuron of interest were excluded. 
Calcium imaging: We tested two lines for DAN-f1 and DAN-d1 and had qualitatively similar results (data shown for only one driver for each 
neuron). Thus, the attempts at replication were successful.

Randomization Behavior: The order of the sequence of presentation for odor and light stimulation (i.e. for paired group: half training protocols are in the 
sequence odor+/air-/odor+/air-/odor+/air- and half are air-/odor+/air-/odor+/air-/odor+, same logic for unpaired group) was alternated 
throughout all experiments. For each figure, the driver lines tested were done so in a random maner, i.e. each line was tested everyday day 
when possible, the time of the day was also shuffled among the lines tested. Most experiments were done by a single experimenter, some 
additional data was obtained by a second experimenter who regularly tested the negative and positive controls besides the neurons of 
interest. 
Calcium imaging: As many different crosses were tested in the same day, in a shuffled sequence, avoiding the same cross to be tested twice in 
a row.

Blinding Behavior: All genotypes tested were coded to the experimenter. 
Calcium imaging: The genotypes were known by the experimenter, as the expression of tagged CsChrimson and GCamp6f in the different 
neurons was recognisable.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used Primary antibodies:  

rabbit anti-GFP (cat\# Af2020, Frontier Institute; 1:1000), chick anti-GFP (ab13970, abcam, 1:1000), rabbit anti-GABA (A2052, 
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Sigma; 1:100), mouse anti-ChAT (ChAT4B1, DSHB Hybridoma Product deposited by P.M. Salvaterra; 1:50), rabbit anti-DVGlut 
(Daniels et al., 2008, diluted 1:1000).  
Secondary antibodies:  
Alexa Fluor 568-conjugated goat anti-rabbit IgG (A-11036, Invitrogen Molecular Probes; 1:300), 
Alexa Fluor 633-conjugated goat anti-mouse IgG (A-21050, Invitrogen Molecular Probes; 1:300), 
Alexa Fluor 488-conjugated goat anti-chicken IgG (A-11039, Invitrogen Molecular Probes; 1:300).

Validation rabbit anti-GFP: Immunohistochemistry in mouse (Takasaki et al., 2010), used in Drosophila (Fushiki et al., 2016) 
chick anti-GFP: Immunohistochemistry-Wholemount in Drosophila 
rabbit anti-GABA: Immunohistochemistry in Drosophila 
mouse anti-ChAT: Immunohistochemistry in Drosophila 
rabbit anti-DVGlut:  Immunohistochemistry in Drosophila (Daniels et al., 2008)

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals Drosophila melanogaster larvae, both sexes, third-instar stage (3.5 days old) were used. Strains are: SS24765-Split-GAL4, 
SS02160-Split-GAL4, SS01702-Split-GAL4, SS01958-Split-GAL4, SS02180-Split-GAL4, MB145B-Split-GAL4, MB065B-Split-GAL4 (Aso 
et al. 2014), S01716-Split-GAL4 (Saumweber et al. 2018), SS04268-Split-GAL4, MB054B-Split-GAL4, MB143B-Split-GAL4, 
MB328B-Split-GAL4, SS01948-Split-GAL4, SS00864-Split-GAL4, SS02163-Split-GAL4, SS00883-Split-GAL4, SS01726-Split-GAL4, 
SS01778-Split-GAL4, SS02181-Split-GAL4, SS02108-Split-GAL4, SS02401-Split-GAL4, yw;;attP2 and yw;attP40;attP2 (Pfeiffer et al. 
2010, Jenett et al.2012), ppk-1.9-GAL4 ; GMR72F11-GAL4 (Ohyama et al. 2015), GMR71A10-GAL4 (Ohyama et al. 2015), ppk-
GAL80 (Yang et al. 2009), repo-GAL80 (Awasaki et al. 2011), iav-LexA (Ohyama et al. 2015), GMR72F11-LexA (Jenett et al. 2012), 
ppk-1kb-hs43-lexA-GAD10, 58E02-LexAp65 (Liu et al. 2012) 
20xUAS-IVS-GCaMP6f 15.693 (Chen et al. 2013), 13xLexAop2-IVS-GCaMP6f-p10 15.693 (BDSC 44276), 20XUAS-CsChrimson-
mVenus (BDSC 55134), 13XLexAop2-CsChrimson-tdTomato (BDSC 55138), 20xUAS-CsChrimson-mCherry (Klapoetke et al. 2014), 
pJFRC29-10xUAS-IVS-myr::GFP-p10 (Pfeiffer et al. 2012)

Wild animals None.

Field-collected samples None.

Ethics oversight Ethics oversight is not required for Drosophila investigations.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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