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Abstract

In a variety of species and behavioral contexts, learning and memory formation recruits two
neural systems, with initial plasticity in one system being consolidated into the other over
time. Moreover, consolidation is known to be selective; that is, some experiences are more
likely to be consolidated into long-term memory than others. Here, we propose and analyze a
model that captures common computational principles underlying such phenomena. The key
component of this model is a mechanism by which a long-term learning and memory system
prioritizes the storage of synaptic changes that are consistent with prior updates to the short-
term system. This mechanism, which we refer to as recall-gated consolidation, has the effect
of shielding long-term memory from spurious synaptic changes, enabling it to focus on
reliable signals in the environment. We describe neural circuit implementations of this model
for different types of learning problems, including supervised learning, reinforcement
learning, and autoassociative memory storage. These implementations involve learning rules
modulated by factors such as prediction accuracy, decision confidence, or familiarity. We
then develop an analytical theory of the learning and memory performance of the model, in
comparison to alternatives relying only on synapse-local consolidation mechanisms. We find
that recall-gated consolidation provides significant advantages, substantially amplifying the
signal-to-noise ratio with which memories can be stored in noisy environments. We show
that recall-gated consolidation gives rise to a number of phenomena that are present in
behavioral learning paradigms, including spaced learning effects, task-dependent rates of
consolidation, and differing neural representations in short- and long-term pathways.
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eLife assessment

This fundamental work proposes a novel mechanism for memory consolidation
where short-term memory provides a gating signal for memories to be consolidated
into long-term storage. The work combines extensive analytical and numerical work
applied to three different scenarios and provides a convincing analysis of the
benefits of the proposed model, although some of the analyses are limited to the
type of memory consolidation the authors consider (and don't consider), which limits
the impact. The work could be revised to include a more thorough comparison to
existing models of memory consolidation and a discussion of its limitations, and the
revision could also streamline the technical terminology. The work will be of interest
to neuroscientists and many other researchers interested in the mechanistic
underpinnings of memory.

Introduction

Systems that learn and remember confront a tradeoff between memory acquisition and retention.
Plasticity enables learning but can corrupt previously stored information. Consolidation
mechanisms, which stabilize or render more resilient certain plasticity events associated with
memory formation, are key to navigating this tradeoff (Kandel et al., 2014     ).

Consolidation may be mediated both by molecular dynamics at the synapse level (synaptic
consolidation) and dynamics at the neural population level (systems consolidation).

Theoretical studies have described how synaptic consolidation affects the strength and lifetime of
memories (Fusi et al., 2005     ; Lahiri and Ganguli, 2013     ; Benna and Fusi, 2016     ). In these
studies, synapses are modeled with multiple internal variables, operating at distinct timescales,
which enable individual synapses to exist in more labile or more rigid (“consolidated”) states.
Such models can prolong memory lifetime and recapitulate certain memory-related phenomena,
notably power-law forgetting curves. Moreover, this line of work has established theoretical limits
on the memory retention capabilities of any such synaptic model, and shown that biologically
realistic models can approximately achieve these limits (Lahiri and Ganguli, 2013     ; Benna and
Fusi, 2016     ). These theoretical frameworks leave open the question of what computational
benefit is provided by systems consolidation mechanisms that take place in a coordinated fashion
across populations of neurons.

The term systems consolidation most often refers to the process by which memories stored in the
hippocampus are transferred to the neocortex (Fig. 1A     ; Squire and Alvarez, 1995     ; Frankland
and Bontempi, 2005     ; McClelland et al., 1995     ; McClelland and Goddard, 1996     ). Prior work
has described the hippocampus and the neocortex as “complementary learning systems,”
emphasizing their distinct roles: the hippocampus stores information about individual
experiences, and the neocortex extracts structure from many experiences (McClelland et al.,
1995     ; McClelland and Goddard, 1996     ). Related phenomena also occur in other brain systems.
In rodents, distinct pathways underlie the acquisition and later execution of some motor skills,
with motor cortex apparently passing off responsibility to basal ganglia structures as learning
progresses (Kawai et al., 2015     ; Dhawale et al., 2021     ). A similar consolidation process is
observed during vocal learning in songbirds, where song learning is dependent on the region
LMAN but song execution can, after multiple days of practice, become LMAN-independent and
rely instead on the song motor pathway (Fig. 1B     ; Warren et al., 2011     ). Some insects also
display a form of systems consolidation. Olfactory learning experiments in fruit flies reveal that
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short and long-term memory retrieval recruit distinct neurons within the fly mushroom body, and
the short-term pathway is necessary for long-term memory formation (Fig. 1C     ; Cervantes-
Sandoval et al., 2013     ; Dubnau and Chiang, 2013     ).

The examples above are all characterized by two essential features: the presence of two systems
involved in learning similar information and an asymmetric relationship between them, such that
learning in one system (the “long-term memory”) is facilitated by the other (the “short-term
memory”). Moreover, mounting evidence indicates that across all these systems, there exist
mechanisms that selectively modulate or gate consolidation into long-term storage. In flies, for
instance, recent work has shown that short-term olfactory memory recall gates long-term memory
storage via a disinhibitory circuit, such that repeated stimulusoutcome pairings are consolidated
into long-term memory but once-presented pairings are not (Awata et al., 2019     ). A recent study
in songbirds indicates that the rate at which song learning is consolidated into the song motor
pathway is modulated by performance quality (Tachibana et al., 2022     ). Finally, a large body of
work has shown that propensity of hippocampal memories to be cortically consolidated is
modulated by a variety of factors including repetition, reliability, and novelty (Terada et al.,
2021     ; Gorriz et al., 2023     ; Jackson et al., 2006     ; Brodt et al., 2016     ).

The ubiquity of the systems consolidation motif across species, neural circuits, and behaviors
suggests that it offers broadly useful computational advantages that are complementary to those
offered by synaptic mechanisms. In this work, we propose that the ability to selectively
consolidate memories is the key computational feature that distinguishes systems from synaptic
memory consolidation. To formalize this idea, we generalize prior theoretical studies studies by
considering environments in which some memories should be prioritized more than others for
long-term retention. We then introduce a model of systems consolidation and show that can
provide substantial performance advantages in such environments. In the model, synaptic
updates are consolidated into long-term memory depending on their consistency with knowledge
already stored in short-term memory. We term this mechanism “recall-gated consolidation.” This
model is well-suited to prioritize storage of reliable patterns of synaptic updates which are
consistently reinforced over time. We derive neural circuit implementations of this model for
several tasks of interest. These involve plasticity rules modulated by globally broadcast factors
such as prediction accuracy, confidence, and familiarity. We develop an analytical theory that
describes the limits on learning performance achievable by synaptic consolidation mechanisms
and shows that recall-gated systems consolidation exhibits qualitatively different and
complementary benefits. Our theory depends on a quantitative treatment of environmental
statistics, in particular the statistics with which similar events recur over time. Different model
parameter choices suit different environmental statistics, and give rise to different learning
behavior, including spaced training effects. The model makes predictions about the dependence of
consolidation rate on the consistency of features in an environment, and the amount of time spent
in it. It also predicts that short-term memory benefits from employing sparser representations
compared to long-term memory. A variety of experimental data support predictions of the model,
which we review in the Discussion.

Results

Following prior work (Fusi et al., 2005     ; Benna and Fusi, 2016     ), we consider a network of
neurons connected by an ensemble N synapses whose weights are described by a vector w ∈ℝN.
For now, we are agnostic as to the structure of the network and its synaptic connections. The
network’s synapses are subject to a stream of patterns of candidate synaptic potentiation and
depression events. We refer to such a pattern as a memory, defined by a vector Δw ∈ℝN. Learning
proceeds according to a specified synaptic update rule that translates candidate potentiation and
depression events (memories) into synaptic changes. One simple example of a synaptic update
rule is a “binary switch” model, in which synapses can exist in two states (active or inactive), and
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Figure 1

Schematic of short- and long-term memory systems across species and brain areas. A. In mice and other mammals,
hippocampal memories are consolidated into cerebral cortex. B. Zebrafinch song learning initially depends on LMAN but later
requires only HVC-to-RA synapses in the song motor pathway. C. In the Drosophila mushroom body (inset), short- and long-
term memories depend on dopamine-dependent plasticity in the γ and α lobes, respectively.
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candidate synaptic updates are binary (potentiation or depression). In this model inactive
synapses activate (resp. active synapses inactivate) in response to potentiation (resp. depression)
events with some probability p. However, our systems consolidation model can be used with any
underlying synaptic mechanisms, and we will consider a variety of synaptic plasticity rules as
underlying substrates.

In our framework, the same memory can be reinforced repeatedly over time. We distinguish
memories by the reliability with which they are reinforced. The notion of reliability in our
framework is meant to capture the idea that the structure of events in the world which drive
synaptic plasticity is in some cases consistent over time, and in other cases inconsistent. For now,
we focus on a simple environment model which captures this essential distinction, in which there
are two kinds of memories: “reliable” and “unreliable.” Reliable memories are consistent patterns
of synaptic updates that are reinforced regularly over time, whereas unreliable memories are
spurious, randomly sampled patterns of synaptic updates. Concretely, in simulations, we assume
that a given reliable memory is reinforced with independent probability λ at each timestep, and
otherwise a randomly sampled unreliable memory is encountered.

A useful measure of system performance is memory recall, defined as the overlap r = Δw ·w
between a memory and the current synaptic state. Specifically, we are interested in the signal-to-
noise ratio (SNR) of the recall of reliable memories, (Fusi et al., 2005     ; Benna and Fusi, 2016     ),
which normalizes the recall strength relative to the scale of fluctuations in recall of random
memory vectors Δw′:

Recall-gated systems consolidation
In our model (Fig. 2A     ), we propose that the population of N synapses is split into two
subpopulations which we call the “short-term memory” (STM) and “long-term memory” (LTM).
Upon every presentation of a memory Δw, the STM recall rSTM = Δw · wSTM is computed. Learning
in the LTM is modulated by a factor g(rSTM). We refer to g as the “gating function.” For now we
assume g to be a simple threshold function, equal to 0 for rSTM < θ and 1 for rSTM ≥θ, for some
suitable threshold θ. This means that consolidation occurs only when a memory is reinforced at a
time when it can be recalled sufficiently strongly by the STM. Later we will consider different
choices of the gating function g, which may be more appropriate depending on the statistics of
memory recurrence in the environment.

We refer to this mechanism as recall-gated consolidation. Its function is to filter out unreliable
memories, preventing them from affecting LTM synaptic weights. With an appropriately chosen
gating function, reliable memories will pass through the gate at a higher rate than unreliable
memories. Consequently, events that trigger plasticity the LTM will consist of a higher proportion
of reliable memories (Fig. 2B     ), and hence attain a higher SNR than the STM. The cost of this
gating is to incur some false negatives—reliable memory presentations that fail to update the LTM.
However, some false negatives can be tolerated given that we expect reliable memories to recur
multiple times, and information about these events is still present in the STM. As a proof of
concept of the efficacy of recall-gated consolidation, we conducted a simulation in which
memories correspond to random binary synaptic update patterns and plasticity follows a binary
switch rule (Fig. 2C     ). Notably, recall-dependent consolidation results in reliable memory recall
with a much higher SNR than an alternative model in which LTM weight updates proceed
independently of STM recall.
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Figure 2

A. Schematic of systems consolidation model. Memories correspond to patterns of candidate potentiation and depression
events (dashed arrows) applied to a synaptic population (solid arrows). The synaptic population is divided into an STM and
LTM. Memories that provoke strong recall in the STM – that is, overlap strongly with the present synaptic state – enable
plasticity (consolidation) in the LTM. B. Schematic of the environmental statistics. A reliable memory (green) arrives
repeatedly with probability λ at each time step, with randomly sampled “unreliable” memories (gray) interspersed. The LTM
is exposed to a filtered subset of consolidated memory traces with a higher proportion of reliable memories. C. Simulation of
recall performance of a single reliable memory with time as it is presented with probability λ = 0.25 at each time step, N =
2000 synapses (1000 each in the STM and LTM). The STM and LTM learning rates (binary switching probabilities) are p = 0.25
and p = 0.05, respectively, and the synaptic state is initialized randomly, each synapse initially active with probability 0.5. In
the recall-gated model, the gating threshold is set at θ = 2−3. Shaded regions indicate standard deviation across 1000
simulations.
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Neural circuit implementations of recall-gated consolidation
Our model requires a computation of recall strength, which we defined as the overlap between the
candidate synaptic weight changes associated with memory storage and the current state of the
synaptic population. From this definition, it is not clear how recall strength can be computed
biologically. The mechanisms underlying computation of recall strength will depend on the task,
network architecture, and plasticity rule giving rise to candidate synaptic changes. A simple
example is the case of a population of input neurons connected to a single downstream output
neuron, subject to a learning rule that potentiates synapses corresponding to active inputs. In this
case, the recall strength quantity corresponds exactly to the total input received by the output
neuron, which acts as a familiarity detector. Below, we give the corresponding recall strength
factors for other learning and memory tasks: supervised learning, reinforcement learning, and
unsupervised auto-associative memory, summarized in Fig. 3A      and derived in the
Supplementary Information. We emphasize that our use of the term “recall” refers the familiarity
of synaptic update patterns, and does not necessarily correspond to familiarity of stimuli or other
task variables.

Supervised learning

Suppose a population of neurons with activity x representing stimuli is connected via feedforward
weights to a readout population with activity ŷ = Wx. The goal of the system is to predict ground-
truth outputs y. A simple plasticity rule which will train the system appropriately is a Hebbian
rule, ΔWij = yixj. The corresponding recall factor is y · ŷ, corresponding to prediction accuracy (Fig.
3B     ).

Reinforcement learning

Suppose a population of neurons with activity x representing an animal’s state is connected to a
population with activity π = Wx representing probabilities of selecting different actions, with πi
equal to the probability of selecting action ai. Following action selection, the animal receives a
reward r, depending on its decision. A simple approach to reinforcement learning is to use a three-
factor rule ΔWij = r · ai · xj, which reinforces actions that lead to reward. For this model, the
corresponding recall factor is r ·p(ai), a multiplicative combination of reward and the animal’s
confidence in its selected action. Intuitively, the recall factor will be high when a confidently
chosen action leads to reward (Fig. 3D     ).

Unsupervised autoassociative memory

Suppose a population of neurons with activity x and recurrent weights W stores memories as
attractors according to an autoassociative Hebbian rule ΔWij = xixj. In this case, the recall strength
W ·ΔW can be expressed as x · (Wx), a comparison between stimulus input x and recurrent input
Wx. Intuitively, the recall factor measures the familiarity of the stimulus, as highly familiar stimuli
will exhibit attractor behavior, making x and Wx highly correlated. Such a quantity could be
computed directly by using separate dendritic compartments for the two input sources, or
indirectly by comparing the network state at successive timesteps. Familiarity also be
approximated using a separate novelty readout trained alongside the recurrent weights (Fig.
3F     ), which is the implementation we use in our simulation. In this approach, a set of readout
weight u receive the neural population activity as input, and follow the learning rule Δu = x. The
readout u · x, an estimate of familiarity, is used as the recall factor.

To verify that the advantages of recall-gated consolidation illustrated in Fig. 2      apply in these
tasks, we simulated the three architectures and learning rules described above (see Methods for
simulation details). In each case, learning takes place online, with reliable task-relevant stimuli
appearing a fraction λ of the time, interspersed among randomly sampled unreliable stimuli. In
the case of supervised and reinforcement learning tasks, unreliable stimuli are paired with
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Figure 3

A. Description of learning rules corresponding to different types of learning problems and corresponding expressions for the
recall factor W ·ΔW used in the recall-gated consolidation model.
B. Schematic indicating a possible implementation of the model in a supervised learning problem, where LTM plasticity is
modulated by the consistency between STM predictions and ground-truth labels.
C. Simulation of a binary classification problem, N = 4000, λ = 0.2, θ = 0.125, p = 0.1. There are twenty total stimuli each
associated with a random binary (±1) label. Plot shows the classification accuracy over time, given by the outputs of the STM
and LTM of the consolidation model. Shaded region indicates standard deviation over 1000 simulations.
D. Like B, but for a reinforcement learning problem. LTM plasticity is gated by both STM action confidence and the presence
of reward.
E. Simulation of a reinforcement learning problem, N = 4000, λ = 0.25, θ = 0.75, p = 1.0. There are five total stimuli and two
possible actions. Each stimulus has a corresponding action that yields reward. The plot shows average reward per step over
time, using the actions given by the STM or LTM.
F. Like B and D, but for an autoassociative unsupervised learning problem. LTM plasticity is gated by familiarity detection in
the STM module, learned using a separate set of weights.
G. Simulation of an autoassociative learning problem. N = 4000, λ = 0.1, θ = 0.25, p = 1.0. Recall performance is evaluated by
exposing the system to a noisy version of the reliable patterns seen during training, allowing the recurrent dynamics of the
network to run for 5 timesteps, and measuring the correlation of the final state of the network with the ground-truth pattern.
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random labels and random rewards, respectively. Reliable stimuli are associated with consistent
labels, or action-reward contingencies. We find that recall-gated consolidation provides significant
benefits in each case, illustrating that the theoretical benefits of increased SNR in memory storage
translate to improved performance on meaningful tasks (Fig. 3C,E,G     ).

An analytical theory of the recall
of repeatedly reinforced memories
We now turn to analyzing the behavior of the recall-gated systems consolidation model more
systematically, to understand the source of its computational benefits and characterize other
predictions it makes. To do so, we developed an analytic theory of memory system performance,
with and without recall-gated consolidation. Importantly, our framework differs from prior work
(Fusi et al., 2005     ; Benna and Fusi, 2016     ) in considering environments with intermittent
repeated presentations of the same memory. We adopt several assumptions for analytical
tractability. First, as in previous studies, we assume that inputs have been preprocessed so that the
representations of different memories are random and uncorrelated with one another (Gluck and
Myers, 1993     ; Benna and Fusi, 2016     ). We also assume, for now, that each memory consists of
an equal number of candidate potentiation and depression events, though later we will relax this
assumption. We are interested in tracking the SNR of recall for a given reliable memory. We
emphasize that this quantity is an abstract measure of system performance reflecting the degree
to which a specific set of synaptic changes (a memory trace) is retained in the system, and its
interpretation varies according to the task in question (Fig. 3     ).

The dynamics of memory storage depend strongly on the underlying synapse model and plasticity
rule. Given a synaptic model, an important quantity to consider is its associated “forgetting curve”
m(t), defined as the average SNR of recall for a memory Δw at t timesteps following its first
presentation, assuming a new randomly sampled memory has been presented at each timestep
since. For example, the binary switch model with transition probability p has an associated
forgetting curve  (Fusi et al., 2005     ). More sophisticated synapse models,

such as the cascade model of Fusi et al. (2005)      and multivariable model of Benna and Fusi
(2016)      achieve power-law forgetting curves (see Methods). In the limit of large system size N
and under the assumption that memories are random, uncorrelated patterns, the forgetting curve
is an exact description of the decay of recall strength.

Forgetting curves capture the behavior of a system in response to a single presentation of a
memory, but we are concerned with the behavior of memory systems in response to multiple
reinforcements of the same memory trace. Thus, another key quantity in our theory is the
interarrival distribution p(I), which describes the distribution of intervals between repeated
presentations of the same memory, and its expected value τ = 𝔼 [I], the average interval length.
Our simplest case of interest is the case in which a given memory recurs according to a Poisson
process; that is, it is reinforced with probability λ at each timestep, independent of the history of
recent reinforcements (as in the simulation in Fig. 2C     ). This case corresponds to an exponential
interarrival distribution p(I) = λe−λx, with mean interarrival time τ = 1/λ.

We now quantify the recall strength for a memory that has been reinforced R times. For the
synapse models we consider, this quantity can be approximated accurately (see Supplemental
Information) by summing the strengths of preceding memory traces, that is:

where ti is the time elapsed since the ith reinforcement of the memory. This quantity is a random
variable whose value depends on the history of interarrival intervals of the memory, and the
specific unreliable memories that have been stored in intervening timesteps. To more concisely
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characterize a system’s memory performance, we introduce a new summary metric, the learnable
timescale of the system. For a given target SNR value and allowable probability of error ϵ, the
learnable timescale  is defined as the maximum interarrival timescale τ for which the SNR of

recall will exceed β with probability 1 −ϵ. We fix ϵ = 0.1 throughout this work; this choice has no
qualitative effect on our results. Learnable timescale captures the system’s ability to reliably recall
memories that are presented intermittently. We note that there exists a close relationship between
learnable timescale and the memory capacity of the system (the number of memories it can store),
with the two quantities becoming linearly related in environments with a high frequency of
unreliable memory presentations (see Supplementary Information and Fig. S3     ).

The quantifications of recall SNR and learnable timescale we present in figures are computed
numerically, as deriving exact analytical expressions for learnable timescale is difficult due to the
randomness of the interarrival distribution. However, to gain theoretical intuition, we find it
useful to consider the following approximation, corresponding to an environment in which
memories are reinforced at deterministic intervals of length τ :

This approximation is an upper bound on the true SNR in the limit of small ϵ, and empirically
provides a close match to the true dependence of SNR on R (Supplementary Information, Fig.
S9     ). Using this approximation allows us to provide closed-form analytical estimates of the
behavior of SNR and learnable timescale as a function of system and environment parameters.

Theory of recall-gated consolidation
In the recall-gated consolidation model, the behavior of the STM is identical to that of a model
without systems consolidation. The LTM, on the other hand, behaves differently, updating only in
response to the subset of memory presentations that exceed a threshold level of recall in the STM.
From the perspective of the LTM, this phenomenon has the effect of changing the distribution of
interval lengths between repeated reinforcements of a reliable memory. For exponentially
distributed interarrival times, the induced effective interarrival distribution in the LTM is also
exponential with new time constant τLTM given by

where I is the distribution of the lengths of intervals between presentations of the same reliable
memory, θ is the consolidation threshold, and Φ is the cumulative distribution function of the
Gaussian distribution. This approximation is valid in the limit of large system sizes N, where
responses to unreliable memories are nearly Gaussian. For general (non-exponential) interarrival
distributions, the shape of the effective LTM interarrival distribution may change, but the above
expression for τLTM remains valid.

We note that although the consolidation threshold θ can be chosen arbitrarily, setting it to too high
a value has the effect of reducing the probability with which reliable memories are consolidated,
by a factor of P (I < m−1(θ)). For large values of θ this reduction can become unacceptably small.
For a given number of memory repetitions R, we restrict ourselves to values of θ for which the
probability that no consolidation takes place after R repetitions is smaller than the allowable
probability of error ϵ.

https://doi.org/10.7554/eLife.90793.1
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Recall-gated consolidation increases SNR
and learnable timescale of memories
For fixed statistics of memory presentations, as the SNR of the STM increases (say, due to
increasing N), stricter thresholds can be chosen for consolidation which filter out an increasing
proportion of unreliable memory presentations, without reducing the consolidation rate of
reliable memories (Fig. 4A     , Fig. S1A     ). Consequently, the SNR of the LTM can grow much
larger than that of the STM, and the amplification of SNR increases with the SNR of the STM.
Notably, the SNR of the LTM in the recall-gated consolidation model also exceeds that of a control
model in which STM and LTM modules are both present but do not interact (Fig. 4B     , Fig.
S1B     ).

We may also view the benefits of consolidation in terms of the learnable timescale of the system.
Recall-gated consolidation enables longer learnable timescales, particularly at high target SNRs
(Fig. 4C     , Fig. S2     ). We note that our definition of SNR considers only noise arising from
random memory sampling and presentation order. High SNR values may be essential for adequate
task performance in the face of additional sources of noise, or when the system is asked to
generalize by recalling partially overlapping memory traces (Benna and Fusi, 2016     ).

Recall-gated consolidation enables better scaling
of memory retention with repeated reinforcement
As mentioned previously, higher consolidation thresholds reduce the rate at which reliable
memories are consolidated. However, the consolidation rate of unreliable memories decreases
even more quickly as a function of the threshold (Fig. 4D,E     ). Hence, higher thresholds increase
the fraction of consolidated memories which are reliable, at the expense of reducing the rate of
consolidation into LTM. This tradeoff may be acceptable if reliable memories are reinforced a
large number of times, as in this case they can still be consolidated despite infrequent LTM
plasticity. In other words, as the number of anticipated repetitions R of a single reliable memory
increases, higher thresholds can be used in the gating function, without preventing the eventual
consolidation of that memory. Doing so allows more unreliable memory presentations to be
filtered out and consequently increases the SNR in the LTM (Fig. 4F     ).

Assuming, as we have so far, that reliable memories are reinforced at independently sampled
times at a constant rate, we show (calculations in Supplementary Information) that the
dependence of learnable timescale on R is linear, regardless of the underlying synaptic model (Fig.
4G     , Fig. S4     ). Synaptic models with a small number of states, such as binary switch or cascade
models, are unable to achieve this scaling without systems consolidation (Fig. 4G     ). In particular,
the learnable timescale is roughly invariant to R for the binary switch model, and scales
approximately logarithmically with R for the cascade model (see Supplementary Information for
derivation). Synaptic models employing a large number of internal states (growing exponentially
with the intended timescale of memory retention), like the multivariable model of Benna and Fusi
(2016)     , can also achieve linear scaling of learnable timescale on R. However, these models still
suffer a large constant factor reduction in learnable timescale compared to models employing
recall-gated consolidation (Fig. 4G     ).

Consolidation dynamics depend on
the statistics of memory recurrence
The benefit of recall-gated consolidation is even more notable when the reinforcement of reliable
memories does not occur at independently sampled times, but rather in clusters. Such irregular
interarrival times might naturally arise in real-world environments. For instance, exposure to one
environmental context might induce a burst of high-frequency reinforcement of the same pattern
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Figure 4

A. Distribution (probability density function) of reliable and unreliable memory overlaps (on a log scale), varying the number
of synapses N. Shaded regions indicate consolidation thresholds that preserve 10% of reliable memory presentations. Units
are standard deviations of the distribution of recall for randomly sampled memories.
B. LTM SNR induced by consolidation (with threshold set as in D) as N varies. The parallel model uses 10% slower learning
rate (value of p in the binary switching synapse model) in the LTM than the STM.
C. Learnable timescale as a function of target SNR, for several values of N, using the binary switching synapse model with

D. Distribution of reliable and unreliable memory overlaps, with various potential gating thresholds indicated.
E. Fraction of memory presentations consolidated (log scale) vs recall threshold for consolidation.
F. LTM SNR induced by consolidation vs. the expected number of repetitions before consolidation occurs. Increasing the
expected number of repetitions corresponds to setting a more stringent consolidation threshold which filters a higher
proportion of reliable memory presentations.
G. Learnable timescale at a target SNR of 10 as a function of number of reliable memory repetitions for several underlying
synapse models, N = 107.
H. Same as G, considering only the multivariable model as the underlying synapse model, and varying the interarrival interval
regularity factor k.

https://doi.org/10.7554/eLife.90793.1


Jack Lindsey et al., 2023 eLife. https://doi.org/10.7554/eLife.90793.1 13 of 50

of synaptic updates, followed by a long drought when the context changes. Intentional bouts of
study or practice could also produce such effects. The systems consolidation model can capitalize
on such bursts of reinforcement to consolidate memories while they can still be recalled.

To formalize this intuition, we extend our theoretical framework to allow for more general
patterns of memory recurrence. In particular, we let p(I) indicate the probability distribution of
interarrival intervals I between reliable memory presentations. So far, we have considered the
case of reliable memories whose occurence times follow Poisson statistics, corresponding to an
exponentially distributed interval distribution. To consider more general occurrence statistics, we
consider a family of interrarival distributions known as Weibull distributions. This class allows
control over an additional parameter k which modulates “burstiness” of reinforcement, and
contains the exponential distribution as a special case (k = 1). For k < 1, reliable memory
presentations occur with probability that decays with time since the last presentation. In this
regime, the same memory is liable to recur in bursts separated by long gaps (details in Methods).

Without systems consolidation, the most sophisticated synapse model we consider, multivariable
model of Benna and Fusi (2016)     , achieves a scaling of learnable timescale that is linear with R
regardless of the regularity factor k. In fact, we show (see Supplementary Information) that the
best possible learnable timescale that can achieved by any synaptic consolidation mechanism
scales approximately linearly in R, up to logarithmic factors. However, for the recall-gated
consolidation model, the learnable timescale scales as R1/k when k ≤1 (Fig. 4H     , Fig. S5     ). In this
sense, recall-gated consolidation outperforms any form of synaptic consolidation at learning from
irregularly spaced memory reinforcement.

Alternative gating functions suit different environmental
statistics and predict spaced training effects
Thus far we have considered a threshold gating function, which is well-suited to environments in
which unreliable memories are each only encountered once. We may also imagine an
environment in which unreliable memories tend to recur multiple times, but over a short
timescale (Fig. 5A     , top). In such an environment, the strongest evidence for a memory’s
reliability is if it overlaps to an intermediate degree with the synaptic state (Fig. 5A     , bottom).
The appropriate gating function in this case is no longer a threshold, but rather a nonmonotonic
function of STM memory overlap, meaning that memories are most likely to be consolidated if
reinforced at intermediate-length intervals (Fig. 5B     ). Such a mechanism is straightforward to
implement using neurons tuned to particular ranges of recall strengths. This model behavior is
consistent with spaced learning effects reported in flies (Beck et al., 2000     ), rodents (Glas et al.,
2021     ), and humans (Rovee-Collier et al., 1995     ; Verkoeijen et al., 2005     ), which all show a
characteristic inverted U-shaped dependence of memory performance on spacing interval.

While some synapse-level models (such as the multivariable synapse model of Benna and Fusi,
2016     ) can also give rise to spaced training effects, these effects require that a synapse undergoes
few additional potentiation or depression events between the spaced reinforcements (Fig. 5C     ,
Fig. S6     ). This is because spacing effects in such models arise when synapselocal variables are
saturated, and saturation effects are disrupted when other events are interspersed between
repeated presentations of the same memory. Hence, the spacing effects arising from such models
are unlikely to be robust over long timescales. Recall-gated systems consolidation, on the other
hand, can yield spaced training effects robustly in the presence of many intervening plasticity
events.
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Figure 5

A. Top: Example sequence of memory presentations where unreliable memories (gray) can repeat multiple times, but only
within within a short timescale (note gradient of light to dark). Bottom: Distribution of reliable and unreliable memory
overlaps induced by such memory presentation statistics (log scale on x axis). Shaded region indicates overlap values that are
at least ten times as likely for reliable memories as for unreliable memories.
B. Probability of consolidation, with the gating function chosen such that only overlaps within the shaded region of panel A
are consolidated, as a function of interarrival interval.
C. SNR at 8 timesteps following 5 spaced repetitions of a memory, with spacing interval indicated on the x axis, for the
multivariable synapse model of Benna and Fusi (2016)      with no systems consolidation. Spaced training effects are present
at short timescales, but not if other memories are presented during the interpresentation intervals.
D. Distribution of recall strengths corresponding to different kinds of memories, in an environment with many reliable
memories. In the environment model, reliable memories are reinforced with different interarrival interval distributions, and
the timescales of these distributions for different memories are distributed loguniformly. The environment also has as a
background rate of unreliable memory presentations appearing at fraction 0.9 of timesteps.
E. Depiction of a generalization of the model in which memories can be consolidated into different LTM sub-modules,
according to gating functions tuned to different recall strengths (intended to target reliable memories with different
timescales of recurrence).
F. A consequence of the model outlined in panel E is a smooth positive dependence of memory lifetime on the spacing of
repetitions, up to some threshold spacing.
G. Learnable timescale calculations for this extended model still show a graceful scaling of learnable timescale with number
of memory repetitions that depends on the regularity (Weibull distribution parameter k) of interarrival intervals.
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Heterogeneous gating functions suit complex environments
with multiple memories reinforced at different timescales
Thus far we has assumed a dichotomy between unreliable, one-off memories and reliable
memories which recur according to particular statistics. In more realistic scenarios, there will
exist many repeatedly reinforced memories, which may be reinforced at distinct timescales. We
may be interested in ensuring good recall performance over a distribution of memories with
varying recurrence statistics. For concreteness, we consider the specific case of an environment
with a large number of distinct reliably reinforced memories, whose characteristic interarrival
timescales are log-uniformly distributed. As before, unreliable memories are also presented with a
constant probability per timestep.

The recall-gated plasticity model already described, using a threshold function for consolidation,
still provides the benefit of filtering unreliable memory traces from the LTM. However, further
improved memory recall performance is achieved with a simple extension to the model. The LTM
can be subdivided into a set of subpopulations, each with distinct gating functions that specialize
for different memory timescales by selecting for different recall strengths (Fig. 5D, E     ). That is,
one subpopulation consolidates strongly recalled memories, another consolidates weakly recalled
memories, and others lie on a spectrum between these extremes. The effect of this arrangement is
to assign infrequently reinforced memory traces to subpopulations which experience less
plasticity, allowing these traces to persist until their next reinforcement. This heterogeneity of
timescales is consistent with observations in a variety of species of intermediate timescale
memory traces (Rosenzweig et al., 1993     ; Cepeda et al., 2008     ; Davis, 2011     ).

Studies of spaced training effects have found that the optimal spacing interval during training
depends on the interval between training and evaluation (Cepeda et al., 2006     , 2008     ). In
particular, the timescale of memory retention is observed to increase smoothly with the spacing
interval used during training. Our extended model naturally gives rise to this behavior (Fig. 5F     ,
Fig. S7     , Fig. S8     ), due to the fact that the lifetime of a consolidated memory scales inversely
with the frequency with which memories are consolidated into its corresponding LTM
subpopulation.

Predicted features of memory
representations and consolidation dynamics
The recall-gated consolidation model makes a number of key predictions. The most basic
consequence of the model is that responsibility for recalling a memory will gradually shift from
the STM to the LTM as consolidation progresses, rendering the recall performance of the system
increasingly robust to the inactivation of the STM (Fig. 6A     ). A more specific prediction of the
model is the rate of updates to the LTM increases with time, as STM recall grows stronger (Fig.
6B     ). The rate of LTM updates also increases with reliability of the environment (operationalized
as the proportion of synaptic update events which correspond to reliable memories) (Fig. 6B     ).

The recall-gated consolidation model also makes predictions regarding neural representations in
the STM and LTM. Until now we have assumed that memories consist of balanced potentiation and
depression events distributed across the population. However, memories may involve only a
sparse subset of synapses, for instance if synaptic plasticity arises from neural activity which is
itself sparse. To formalize this notion, we consider memories that potentiate a fraction f of
synapses, and a correspondingly modified binary switch plasticity rule such that potentiation
activates synapses with probability p and depression inactivates synapses with probability 

We show analytically (see Supplementary Information) that in the limit of low f, the SNR-
optimizing choice of f is proportional to the rate λ of reliable memory reinforcement (Fig. 6C     ).
Other factors, such as energetic constraints and noise-robustness, may also affect the optimal
coding level. In general, however, our analysis shows that environments with infrequent
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Figure 6

A. Top: Recall performance for a single reliable memory (true positive rate, with a decision threshold set to yield a 10% false
positive rate) as learning progresses. Simulation environment is the same as in Fig. 2C     . N = 103, λ = 0.25. Bottom:
difference between combined recall performance and LTM-only performance. The STM makes diminishing contributions to
recall over time.
B. Probability of consolidation into LTM increases with experience and with the reliability of the environment (parameterized
here by the recurrence frequency λ of reliable memories). Simulation environment is the same as in panel A.
C. For a single population of binary synapses (no consolidation) and Poisson memory recurrence, mean SNR as a function of
reliable memory recurrence frequency λ and memory sparsity f. Dots indicate simulation results and solid lines indicate
analytical approximation. N = 1024.
D. For the systems consolidation model using binary synapses, total system SNR (N = 256) as a function of memory sparsity in
the STM and LTM.
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reinforcement of a given reliable memory incentivize sparser representations. As the effective
value of λ is amplified in the LTM module, it follows that the LTM benefits from a denser
representation than the STM. Interestingly, we also find that the optimal sparsity in the STM
decreases when optimizing for the overall SNR of the system—that is, the the optimal STM
representation is even more sparse in the context of supporting LTM consolidation than it would
be in isolation. Taken together, these two effects result in much denser representations being
optimal in the LTM than in the STM (Fig. 6D     ). One consequence of denser representations is
greater generalization in the face of input noise (Babadi and Sompolinsky, 2014     ), implying that
an optimal STM/LTM system should employ more robust and generalizable representations in the
LTM.

Discussion

We have presented a theory of systems memory consolidation via recall-gated long-term plasticity,
which provides complementary benefits to synaptic consolidation mechanisms in terms of
memory lifetime and retrieval accuracy. Its advantage arises from the ability to integrate over the
information present in an entire neuronal population, rather than individual synapses, in order to
decide which memory traces are consolidated. This capability is important in environments that
induce a mixture of reliable and unreliable synaptic updates, in which a system must prioritize
which updates to store long-term.

Experimental evidence for recall-gated consolidation
The recall-gated consolidation model is by design agnostic to the underlying neural circuit and
hence potentially applicable to a wide variety of species and brain regions. Here we summarize
evidence consistent with recall-gated consolidation in several model organisms. As our proposal is
new, the experiments we describe were not designed to directly test our model predictions, and
thus provide incomplete evidence for them. We hope that future work will more directly clarify
the relevance of our model to these systems as well as others, the mechanisms by which it is
implemented, and the shortcomings it may have in accounting for experimental results.

Associative learning in insects

In the Drosophila mushroom body, plasticity is driven by activity of dopamine neurons
innervating a collection of anatomically defined compartments, some of which are associated with
short or long-term memory (Aso et al., 2014     ). These neurons receive a wide variety of inputs,
including from mushroom body output neurons themselves (Li et al., 2020     ). Such inputs provide
a substrate by which long-term learning can be modulated by the outputs of short-term pathways.
To implement recall-gated consolidation, the activity of dopamine neurons mediating long-term
memory should be gated by learning in corresponding shortterm pathways. A recent study found
an instance of this motif, in which short-term aversive learning decreases the activity of the γ1
output neuron, disinhibiting a dopamine neuron in the α2 compartment associated with long-term
aversive learning (Awata et al., 2019     ). More work is needed to determine if other examples of
this motif can be found in Drosophila or other insects.

Motor learning

Several lines of work have indicated that the neural substrate of motor skills can shift with
practice. In songbirds, learned changes to song performance are initially driven by a cortico-basal
ganglia circuit called the anterior forebrain pathway (AFB) but eventually are consolidated into
the song motor pathway (SMP) and become AFB-independent (Andalman and Fee, 2009     ; Warren
et al., 2011     ). Using transient inactivations of LMAN, a region forming part of the AFB, a recent
study quantified the degree of AFB-to-SMP consolidation over time and found that it strongly
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correlated with the bird’s motor performance at the time (Tachibana et al., 2022     ). This finding is
consistent with our model’s prediction that the rate of consolidation should increase as learning
progresses in the short-term pathway.

A related motor consolidation process has been observed during motor learning in rats.
Experiments have shown that motor cortex disengages from heavily practiced skills (Kawai et al.,
2015     ; Hwang et al., 2019     ), transferring control at least in part to the basal ganglia (Dhawale et
al., 2019     , 2021     ), and that the degree of cortical disengagement tracks motor performance, as
measured by the variability of learned trajectories (Hwang et al., 2021     ). This finding is broadly
consistent with recall-consolidation, with short-term learning being mediated by motor cortex and
long-term learning being mediated by basal ganglia. However, we note that unlike in the song
learning study referenced above, it neither confirms nor rejects our stronger prediction that the
rate (rather than overall extent) of motor consolidation increases with learning.

Spatial learning and hippocampal replay

Hippocampal replay is thought to be crucial to the consolidation of episodic memories to cortex
(Carr et al., 2011     ; Ólafsdóttir et al., 2018). Replay has many proposed computational functions,
such as enabling continual learning (van de Ven et al., 2020     ), or optimizing generalization
performance (Sun et al., 2021     ), which are outside the scope of our model. However, under the
assumption that replay enables long-term memory storage in cortex, the recall-gated consolidation
model makes predictions about which memories should be replayed—namely, replay should
disproportionately emphasize memories that are familiar to the hippocampus. That is, we would
predict more frequent replay of events or associations that are frequently encountered than of
those that were experienced only once, or unreliably.

Recent experimental work supports this hypothesis. A recent study found that CA3 axonal
projections to CA1, those that respond visual cues associated with a fixed spatial location are
recruited more readily in sharp-wave ripple events than those that respond to the randomly
presented cues (Terada et al., 2021     ). Earlier work found that sharp-wave ripple events occur
more frequently during maze navigation sessions with regular trajectories, and increase in
frequency over the course of session, similar to the behavior of our model in Fig. 4B      (Jackson et
al., 2006     ). Thus, existing evidence suggests that hippocampal replay is biased toward familiar
patterns of activity, consistent with a form recall-gated consolidation. Other experiments provide
preliminary evidence for signatures of such a bias in cortical plasticity. For instance, fMRI study of
activity in hippocampus and posterior parietal cortex (PPC) during a human virtual navigation
experiment found that that the recruitment of PPC during the task, which was linked with
memory performance, tended to strengthened with experience in a static environment, but did
not strengthen when subjects were exposed to an constantly changing environment, consistent
with consolidation of only reliable memories (Brodt et al., 2016     ).

Comparison with synaptic consolidation mechanisms
Recall-gated consolidation improves memory performance regardless of the underlying synapse
model (Fig. 4     ), indicating that its benefits are complementary to those of synaptic consolidation.
Our theory quantifies these benefits in terms of the scaling behavior of the model’s maximum
learnable timescale with respect to other parameters. First, for any underlying synapse model,
recall-gated consolidation allows learnable timescale to decay much more slowly as a function of
the desired SNR of memory storage. Second, recall-gated consolidation achieves (at worst) linear
scaling of learnable timescale as a function of the number of memory reinforcements R. For
models with a fixed, finite number of internal states per synapse, this scaling is at best
logarithmic. Our results therefore illustrate that systems-level consolidation mechanisms allow
relatively simple synaptic machinery (Emes et al., 2008) to support long-term memory storage. We
note that more sophisticated synaptic models, which involve a large number of internal states that
scales with the memory timescale of interest (Benna and Fusi, 2016     ), can also achieve linear
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scaling of learnable timescale with R (though recall-gated consolidation still improves their
performance by a large constant factor). However, for environmental statistics characterized by
concentrated bursts of repeated events separated by long gaps, recall-gated consolidation achieves
superlinear power-law scaling, which we showed is not achievable by any synapse-local
consolidation mechanism.

Our model provides an explanation for spaced training effects (Fig. 5     ) based on optimal gating
of long-term memory consolidation depending on the recurrence statistics of reliable stimuli. It is
important to note that, depending on the specific form of internal dynamics present in individual
synapses, synaptic consolidation models can also reproduce spacing effects. For example, the
initial improvement of memory strength with increased spacing arises in the model of Benna and
Fusi (2016)      due to saturation of fast synaptic variables, meaning that the timescale of these
internal variables determines optimal spacing, and that intervening stimuli can block the effect by
preventing saturation (Fig. 5     ). In contrast, in our model this timescale is set by population-level
forgetting curves, rendering spacing effects robust over long timescales and in the presence of
intervening events. It is likely that mechanisms at both the synaptic and systems level contribute
to spacing effects; our results suggest that effects observed at longer timescales are likely to arise
from memory recall mechanisms at the systems level.

Other models of systems consolidation
Unlike previous theories, our study emphasizes the role of repeated memory reinforcement in
consolidation and explicitly quantifies the consequences of such reinforcement. However, there
are important connections between our work other computational models of systems
consolidation that have been proposed. Much of this work focuses on consolidation via
hippocampal replay. Prior work has proposed that replay (or similar mechanisms) can prolong
memory lifetimes (Shaham et al., 2021     ; Remme et al., 2021     ), alleviate the problem of
catastrophic forgetting of previously learned information (van de Ven et al., 2020     ; González et
al., 2020     ; Shaham et al., 2021     ), and facilitate generalization of learned information
(McClelland et al., 1995     ; Sun et al., 2021     ). One prior theoretical study (Roxin and Fusi, 2013     ),
which uses replayed activity to consolidate synaptic changes from short to long-term modules,
explored how systems consolidation extends forgetting curves. Unlike our work, this model does
not involve gating of memory consolidation, and consequently provides no additional benefit in
consolidating repeatedly reinforced memories. Our model is thus distinct from, but also
complementary to, these prior studies. In particular, recall-gated consolidation can be
implemented in real-time, without replay of old memories. However, as discussed above, selective
replay of familiar memories is one possible implementation of recall-gated consolidation. Selective
replay is a feature of some of the work cited above (Shaham et al., 2021     ; Sun et al., 2021     ),
which suggests it can provide advantages for retention and generalization (Shaham et al., 2021     ;
Sun et al., 2021     ).

Other work has proposed models of consolidation, particularly in the context of motor learning, in
which one module “tutors” another to perform learned behaviors by providing it with target
outputs (Murray et al., 2017; Teşileanu et al., 2017     ). Murray and Escola (2020)      proposes a fast-
learning pathway (which learns using reward or supervision) which tutors the slow-learning long-
term module via a Hebbian learning rule. In machine learning, a similar concept has become
popular (typically referred to “knowledge distillation”), in which the outputs of a trained neural
network are used to supervise the learning of a second neural network on the same task (Hinton et
al., 2015     ; Gou et al., 2021     ). Empirically, this procedure is found to improve generalization
performance and enable the use of smaller networks. Our model can be interpreted as a form of
partial tutoring of the LTM by the STM, as learning in the LTM is partially dictated by outputs of
the STM. In this sense, our work provides a theoretical justification for the use of tutoring signals
between two neural populations.
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Limitations and future work
In addition to motivating new experiments to test the predictions of a recall-gated consolidation
model, our work leaves open a number of theoretical questions that future modeling could
address. Our theory assumes fixed and random representations of memory traces. Subject to this
assumption, we showed that short-term memory benefits from sparser representations than long-
term memory. In realistic scenarios, synaptic updates are likely to be highly structured, and the
optimal representations in each module could differ in more sophisticated ways. Moreover,
adapting representations online—for instance, in order to decorrelate consolidated memory traces
—may improve learning performance further. Addressing these questions requires extending our
theory to handle memory statistics with nontrivial correlations. Another possibility we left
unaddressed is that of more complex interactions between memory modules—for instance,
reciprocal rather than unidirectional interactions—or the use of more than two interacting
systems.

Finally, in this work we considered only a limited family of ways in which long-term consolidation
may be modulated—namely, according to threshold-like functions of recall in the short-term
pathway. Considering richer relationships between recall and consolidation rate may enable
improved memory performance and/or better fits to experimental data. Moreover, in real neural
circuits, additional factors besides recall, such as reward or salience, are likely to influence
consolidation as well. Unlike our notion of recall, which can be modeled in task-agnostic fashion,
the impact of such additional factors on learning likely depends strongly depend on the behavior
in question. Our work provides a theoretical framework that will facilitate more detailed models
of the rich dynamics of consolidation in specific neural systems of interest.
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Methods

Theoretical Framework
We consider a population of N synapses, indexed by i ∈ {1, 2, …, N} each with a synaptic weight wi
∈ ℝ. The set of synaptic weights across the population can be denoted by the vector w ∈ ℝN. The
synapses may retain additional information besides strength as well; if each synapse carries d-
dimensional state information in addition to its strength, the synaptic state can be written as

, with the scalar synaptic strengths wi ∈ ℝ defined as a function of the high-

dimensional state . We define memories as patterns of candidate synaptic modifications,

following prior work (Benna and Fusi, 2016     ; Fusi et al., 2005     ). More specifically, we model
each memory as a vector Δw ℝN of candidate potentiation and depression events. By defining
memories in this fashion, our analysis can remain agnostic to the network architecture and
learning rule that give rise to synaptic modifications. We will typically model memories as binary
potentiation/depression events for simplicity, but in principle, memories can be continuous
valued. Synaptic are updated by memories according to a learning rule

, which maps the synaptic state at the time of a memory event to the

subsequent synaptic state.
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For theoretical calculations, we assume as in prior work (Fusi et al., 2005     ; Benna and Fusi,
2016     ), that the components of each memory Δw are independent and uncorrelated with those
of other memories (though this assumption is violated in our task learning simulations). We also
assume for simplicity that memories are mean-centered so that 𝔼 [w ·Δw ′] = 0 over randomly
sampled memories Δw ′.

We define the recall strength associated with memory as the overlap r = w ·Δw. This definition
reflects an “ideal observer” perspective, as it requires direct and complete access to the state of the
synaptic population. The ideal observer perspective provides an upper bound on the recall
performance of a real system, and should be a fairly good approximation assuming that memory
readout mechanisms are sophisticated enough. We are particularly interested in the normalized
recall strength

where the expectation is taken over randomly sampled memories Δw ′. We refer to this quantity as
the signal-to-noise ratio (SNR) of memory recall.

Synaptic models and plasticity rules
In this paper we primarily consider three synaptic models and corresponding learning rules,
taken from prior work.

The first and simplest is is a “binary switch” model in which synapses take on binary (±1) values
and stochastically activate (resp. inactivate) in response to candidate potentiation (resp.
depression) events with probability p (Amit and Fusi, 1994     ). No auxiliary state variables are
used in this model.

The second is the “cascade” model of Fusi et al. (2005)     , in which synapses are modeled as a
Markov chain with a finite number 2k of discrete states with transition probabilities dependent on
the kind of memory event (potentiation or depression). Half the states (states a1, …, ak) are
considered potentiated (strength +1) and half (states b1, …, bk) are depressed (strength −1).
Intuitively, states of the same potentiation level correspond to different propensities for plasticity
in the synapse, enabling a form of synaptic consolidation. Formally, for i < k, the potentiated state
ai (resp. depressed state bi) transitions to state ai+1 (resp. bi+1) with probability  following a

potentiation (resp. depression) event. And for i < k, the potentiated state αi (resp. depressed state
bi) transitions to state b1 (resp. a1) with probability αi−1 following a depression (resp. potentiation)
event. For i = k this latter transition occurs with probability  (as described in Fusi et al.

(2005)     , this choice is made for convenience to ensure equal occupancy of the different synaptic
states). We assume α = 0.5 throughout.

The third synaptic model is the model of Benna and Fusi (Benna and Fusi, 2016     ), which we refer
to as the “multivariable” model. In this model, synapses are described by a chain of m interacting
continuous-valued variables u1, …, um, the first of which corresponds to synaptic strength.
Potentiation and depression events increment or decrement the value of the first synaptic
variable, and a set of difference equations governs the evolution of the multidimensional state at
each time step:
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where n and α a parameter of the model (we assume n = 2, α = 0.5 throughout). This model also
provides the ability for synapses to store information at different timescales, due to the
information retained in auxiliary variables.

Model implementation for example tasks
Supervised Hebbian learning We simulated a single-layer feedforward network with a population
of N input units (activity denoted by x) and a single output unit, (activity denoted by ŷ), connected
with a 1 × N binary weight matrix W, such that ŷ = Wx. In each simulation, a set of P = 20 reliable
stimuli were randomly generated, which corresponded to binary  random N - dimensional

activity patterns in the input units. Note that due to the scaling of the inputs and use of binary
synaptic weights, the activity ŷ is constrained to lie in the interval [−1, 1]. Each reliable stimulus
was associated with a randomly chosen (but consistent across the simulation) label y, 1 or −1. At
each time step one of the reliable stimuli (along with its label) was presented to the network with
probability λi = 0.01 for all i = 1, …, P. Otherwise (with probability 1 – ∑i λi), a randomly sampled
unreliable stimulus was presented with a randomly chosen label. Weights experienced candidate
potentiation or depression events given by a Hebbian learning rule ΔW = yxT, corresponding to
the product of the binary input neuron activity and the corresponding label. Learning followed
the binary switch rule with p = 0.1; that is, candidate potentiation events resulted in potentiation
with probability p, and likewise for depression events. At each timestep the product of the STM
output and the ±1 label was computed, and if it exceeded the consolidation threshold θ = 0.125,
plasticity was permitted in the LTM network.

Reinforcement learning

We used the same setup as in the supervised learning task, with the following modifications. The
activity of the output unit (denoted by π in this problem) represented the probabiliy of taking one
of two possible actions: p(a1) = π and p(a2) = 1 −π. Each reliable stimulus was associated with a
correct action. Taking the correct action yielded a reward of r = 1, while taking the other action
yielded a reward of r = −1. Plasticity events followed the following three-factor learning rule: ΔW =
(r ·a)xT. At each timestep the product of the STM action probability and the reward was computed,
and if it exceeded the consolidation threshold θ = 0.75, plasticity was permitted in the LTM
network. For all plasticity we used the binary switch rule with p = 1.0.

Unsupervised Hebbian learning

We simulated two recurrent neural networks with N = 1000 binary units each and with binary
recurrent weight matrices WSTM and WLTM, respectively. Memories consisted of binary (entries
equal to ) random N -dimensional vectors that provided direct input x to the network units at

each timestep. The network state h evolved for T = 5 timesteps according to the following
dynamics equation

where ϕ is a binary threshold nonlinearity with threshold set so that 50 percent of units were
active at each time step (corresponding to a mechanism that normalizes activity across the
network). The weights W of the network were binary and initialized as binary random variables
with equal on/off probability. The network weights Wij were subjected to potentiation events
when xi and xj were both active at t = 0, and otherwise subjected to depression events. Synaptic
updates followed the binary switch rule with probability p = 1.0.

Additionally, a set of N weights u connected the STM units to a single readout unit that measured
familiarity. These weights were also binary and experienced candidate potentiation/depression
events when their corresponding unit was active/inactive, respectively. These weights followed the
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binary switch rule with probability p = 1.0.

Plasticity in the LTM proceeded according to the same rule as in the STM but was gated by recall
strength r = u · xSTM, according to a threshold function with threshold equal to 0.25.

The performance of the network was determined by presenting noise-corrupted versions of the
reliable memory and measuring the correlation between the network state and the uncorrupted
memory after T = 5 time steps. The corrupted patterns were obtained by adding Gaussian noise of
variance  to the ground-truth pattern, and binarizing the result by choosing the

fraction 0.5 of units with the highest values to be active.

Forgetting curves for different synaptic learning rules
Prior work (Fusi et al., 2005     ; Benna and Fusi, 2016     ) has considered environments in which a
given memory is presented to the system only once. In this case, the performance of a single
population of synapses with a given learning rule depends crucially on the memory trace function
m(t). This is defined as

the recall SNR at time t for a memory Δw presented at t = 0, assuming randomly sampled
memories have been presented in the intervening timesteps. For the binary switch model,

 More sophisticated synaptic models, like the cascade and multivariable

models, can achieve power-law scalings (Fusi et al., 2005     ; Benna and Fusi, 2016     ). The key
feature of these models that enables power-law forgetting is that their synapses maintain
additional information besides their weight, which encodes their propensity to change state. In
this fashion, memories can be consolidated at the synaptic level into more stable, slowly decaying
traces. The cascade model of Fusi et al. achieves

for some characteristic timescale T which can be chosen as a model parameter. Hence, its
performance is upper bounded by

The model of Benna and Fusi can achieve

which is upper bounded by

Benna and Fusi also show that  scaling is an upper bound on the performance of any

synapse model with finite dynamic range.

https://doi.org/10.7554/eLife.90793.1
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Implementation of SNR and learnable timescale computations
To compute recall strengths associated with single synaptic populations, we first sampled
interarrival intervals I from the environmental statistics p(I). Given a number of repetitions R, we
computed then computed recall strength samples , where m is the forgetting

curve associated with the underlying synaptic learning rule, and Ii are independent samples from
p(I). We scaled recall strengths by a factor of  to compute the recall SNR(an approximation that

is exact in the large-N limit).

To compute recall strengths associated with the recall-gated consolidation model, we repeated the
above procedure using a new interarrival distribution p(ILTM) induced by the gating model. The
induced distribution ILTM is obtained by drawing as samples the lengths of intervals between
consecutive interarrival interval samples for which the corresponding recall SNR in the STM
exceeds the gating threshold θ (corresponding to the interval between consolidated reliable
memory presentations), and rescaling it by the fraction of unreliable memories that are
consolidated. Strictly speaking, in the general case this distribution is nonstationary, as the
probability of STM recall exceeding the threshold can change as synaptic updates accumulate
across repetitions for sophisticated synapse models like that of Benna and Fusi (2016)     . We adopt
a conservative approximation that ignores such effects and thus slightly underestimates the rate
of consolidation when such synaptic models are used (and consequently underestimates the SNR
and learnable timescale of the recall-gated consolidation model). With this approximation, the
random variable ILTM is defined as as the following mixture distribution

where each Ii ∼p(I), ζt ∼N (0, 1), and q indicates the probability of a reliable memory presentation
inducing consolidation. The value of j corresponds to the number of reinforcements that go by
between instances of consolidation. For sufficiently large τ this distribution can be approximated
by

where Φ is the CDF of the standard normal distribution. For large N, the probability of
consolidation q = P (I < m−1(θ)).

We note that for an exponential interarrival distribution with mean τ, the induced distribu-tion of
I LTM is also exponential, with mean  This is because the sums 1−Φ(θ) of j

independent samples Ii are distributed according to a Gamma distribution with shape parameter j,
and the mixture of such Gamma distributions with geometrically distributed mixture weights p(j)
= q(1 − q)j−1 is itself an exponential distribution with mean τ/q.

For a given number of expected memory repetitions R, the gating threshold θ was set such that at
least one of the R repetitions would be consolidated with probability 1 −ϵ, ϵ = 0.1. Where R is not
reported, we assume it equal to 2, the minimum number of repetitions for the notion of
consolidation to be meaningful in our model.

To compute learnable timescales, we repeated the above SNR computations over a range of mean
interarrival times τ = 𝔼 [I], keeping the interarrival distribution family (Weibull distributions with
a fixed value of k, see below) constant. We report the maximum value of τ for which the SNR

https://doi.org/10.7554/eLife.90793.1
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exceeds the designated target threshold with probability 1 − ϵ, ϵ = 0.1.

Throughout, for our interarrival distributions we use Weibull distributions with regularity
parameter k. The corresponding cumulative distribution function is

Where τ = 𝔼 [I], and Γ is the Gamma function. In the case k = 1, this reduces to an 35 exponential
distribution of interarrival intervals, which corresponds to memory reinforcements that occur
according to a Poisson process with rate λ = 1/τ. In the limit k → ∞, it corresponds to interarrival
intervals of deterministic length τ. For k < 1, the interarrival distribution is “bursty,” with periods
of dense reinforcement separated by long gaps.

Spacing effect simulations
We simulated the multivariable synapse model of Benna and Fusi (Benna and Fusi, 2016     ), in
which each synapse is described by m continuous-valued dynamical variables u1, …, um which
evolve as follows:

For the first variable u1, in place of ui−1 we substitute components Δwj of the memory traces. For
the last variable um, in place of ui+1 we substitute 0. The strength of each synapse corresponds to
the value of its first dynamical variable. For our simulations we chose m = 10 dynamical variables,
n = 2, α = 0.5, and N = 400 synapses. The value of α is also varied in Fig. S6     . A spacing interval Δ
was selected and a randomly drawn reliable memory was presented at Δ-length intervals (the
same pattern at each presentation). In the case without intervening memories, the dynamics of
each synapse ran unimpeded between these presentations. In the case with intervening memories,
new randomly drawn patterns were presented to the system at each timestep between the reliable
memory presentations. Each pattern was drawn with values equal to , with equal probability.

Generalized model with multiple memory timescales
In our generalized environment model, the environment contains a variety of distinct reliable
memories xi which recur with Poisson statistics at a variety of rates λi. Timescales τi = 1/λi are
distributed as p(log τ) ∼ [0, A] where A is a large constant. This corresponds to the value of log λ
being uniformly distributed in [−A, 0], or equivalently to p(λ) ∼1/λ and bounded between e−A and 1.
The environment also contains an additional fraction of unreliable memories as before, sampled
randomly and presented with a fixed probability at each timestep. The natural generalization of
learnable timescale to this setting is the maximum interarrival interval timescale for which the
lifetime of a corresponding memory (the time following last reinforcement its recall strength
decays to an SNR below the target SNR) exceeds that timescale.

The distribution of interarrival intervals for memory i is

https://doi.org/10.7554/eLife.90793.1
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Integrating across the distribution of λ, we get the distribution of interarrival intervals for reliable
memories observed by the system:

for large I.

The full distribution of interval strengths (including unreliable memories) is a mixture of preliable
and a delta function at I = ∞, with the latter’s weight corresponding to the probability with which
an unreliable memory is sampled at a given timestep (in our simulations we chose 0.9).

From here we can compute a distribution of STM recall strengths r

We simulated a model in which an ensemble of LTM subpopulations are assigned gating functions
gi(r) equal 1 for log r ∈ [Ai, Ai+1] and 0 elsewhere, with the Ai spaced evenly over . The

expected lifetime of a memory reinforced with a given interval I ′ is given approximately by the
STM lifetime divided by the fraction of memory presentations for which the recall strength lies in
the same interval as m(I ′). This quantity reflects the proportion of memories presentations that
are consolidated into the same LTM subpopulation as the memory in question.

Supplemental Figures
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Supplemental Figure S1

A. Same as Fig. 4A     , also varying the presentation rate λ of reliable memories. B. Same as Fig. 4B     , also varying the
presentation rate λ of reliable memories.

https://doi.org/10.7554/eLife.90793.1
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Supplemental Figure S2

A. Same as Fig. 4C     , also varying the underlying synaptic learning rule. B. Same learnable timescale information as panel A,
presented as a function of the synaptic population size N.

Supplemental Figure S3

Same as Fig. 2C     , but with multiple reliable memories simultaneously learned, each recurring equally often at a rate λi =
0.01 for all reliable memories i. Here N = 105 synapses, and the STM and LTM learning rates are 0.05 and 0.01, respectively. In
the recall-gated model, the gating threshold is set at θ = 2−7. Each plot corresponds to a different number P of reliable
memories being stored (the SNR shown is averaged across the reliable memories). The behavior of the SNR of an individual
reliable memory is approximately the same as in the single-memory case for small values of λtot but diverges from it when
λtot grows large.

https://doi.org/10.7554/eLife.90793.1


Jack Lindsey et al., 2023 eLife. https://doi.org/10.7554/eLife.90793.1 29 of 50

Supplemental Figure S4

Same information as Fig. 4G     , varying the population size N and the desired SNR.

https://doi.org/10.7554/eLife.90793.1


Jack Lindsey et al., 2023 eLife. https://doi.org/10.7554/eLife.90793.1 30 of 50

Supplemental Figure S5

Same information as Fig. 4H     , varying the population size N and the desired SNR

https://doi.org/10.7554/eLife.90793.1


Jack Lindsey et al., 2023 eLife. https://doi.org/10.7554/eLife.90793.1 31 of 50

Supplemental Figure S6

Same information as Fig. 5C     , varying the learning rate (scale of potentiation/depression impulses, relative to the
maximum/minimum threshold values in the model of Benna and Fusi (2016)     ), and the length of time following spaced
training at which the system’s recall SNR is evaluated.

https://doi.org/10.7554/eLife.90793.1
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Supplemental Figure S7

Same as Fig. 5D      (top row) and Fig. 5F      (bottom row), for different population sizes N.

Supplemental Figure S8

Same as Fig. 5D      (top row) and Fig. 5F      (bottom row), for different memory recurrence regularity factors (Weibull
distribution parameter k).

https://doi.org/10.7554/eLife.90793.1
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Supplemental Figure S9

SNR as a function of repetitions for single populations without consolidation, varying the parameter k of the Weibull
distribution governing interarrival times (and defining the learnable timescale in terms of the expected interarrival time). The
behavior of the systems scales similarly for diverse values of k→ ∞, justifying the use of the deterministic approximation k for
theoretical calculations. The learning rate for the binary model here is set at 0.1.

https://doi.org/10.7554/eLife.90793.1
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Supplementary Information

Derivation of recall strength quantity for specific plasticity rules

In the following derivations, we make heavy use of the fact that the elementwise dot product W1 ·
W2 between two matrices is equal to .

Supervised Hebbian learning

Let x be the input population activity, W be the prediction weights, ŷ = Wx the output population
activity (predicted probabilities), and y indicate ground-truth target values. For a plasticity rule
ΔW = yxT, the recall strength r = W · ΔW can be written as

corresponding to the accuracy of the prediction ŷ.

If instead plasticity is driven by the delta rule, ΔWij = (yi −ŷi)xj, the recall factor becomes (y ·ŷ) −||
ŷ|| 2, which assuming normalized activity is simply an offset measure of prediction accuracy. In
either case, the computation of the recall factor requires an explicit comparison of predictions to
ground truth labels.

Reinforcement learning

Let x be the input population activity representing state information, W be the output weights, π =
Wx be the output population activity representing log probabilities of taking a given action, a be a
vector indicating the sampled action, and r = 1 be the scalar reward that results. For a plasticity
rule ΔW = r · (axT), the recall strength r = W ·ΔW can be written as

Following the same steps as the derivation for the supervised learning case, with a in place of y,
gives

corresponding to the confidence with which the action a was selected, modulated by reward.

Computing this factor requires preserving the network’s action probability distribution, extracting
from it the probability of the sampled action, and multiplicatively scaling the result by the
obtained reward.

https://doi.org/10.7554/eLife.90793.1


Jack Lindsey et al., 2023 eLife. https://doi.org/10.7554/eLife.90793.1 35 of 50

Autoassociative memory

Let x be the population activity and W be the recurrent weight matrix. If ΔW = xxT, and the weight
matrix W can be written as a sum  over prior plasticity-driven updates, then the recall

strength r = W · ΔW can be written as

corresponding the familiarity of the current pattern x relative to all previously seen patterns xi.

Familiarity also be computed with a separate familiarity readout trained alongside the recurrent
weights. If the familiarity readout employs a Hebbian rule, the resulting estimate of familiarity
will be equal to

For uncorrelated patterns in a network below capacity, this strategy corresponds exactly to the
true recall factor in the limit of large network size.

https://doi.org/10.7554/eLife.90793.1
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Relationship between learnable timescale and capacity
We note that theoretical work on memory systems often focuses on memory capacity, the number
of memories that can be reliably stored in the system (Gardner, 1988     ; Fusi et al., 2005     ; Benna
and Fusi, 2016     ). Our learnable timescale metric is distinct from capacity. However, the two are
closely linked in a particular regime. Suppose P distinct reliable memories are reinforced
independently at rates λ1, …, λP. In the regime in which the overall rate of reliable memory
presentation λtot = Σi λi is small, the SNR of memory recall for memory i will be the same as in the
case of a single reliable memory with λ = λi (Fig. S3     ). Hence, for a fixed λtot, and for simplicity
assuming that distinct reliable memories are presented at equal rates  for all i, the

learnable timescale τ ∗ of the system dictates its capacity, equal to τ ∗λtot. We note that this
correspondence does not hold in the case where most observed memories are reliable. In this
work, however, we are interested primarily in the regime of scarce reliability, where recall-gated
consolidation provides the most benefit. In this regime, we regard the learnable timescale as the
most natural measure of system performance, as the primary obstacle to memory storage is the
presence of long gaps between reinforcements of reliable memories.

https://doi.org/10.7554/eLife.90793.1
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The effect of repeated reinforcement on memory
dynamics without recall-gated consolidation
When memories can recur multiple times, the memory trace function m(t) is no longer an
adequate description of system behavior, as the synaptic updates from multiple presentations can
combine. For the synaptic learning rules we consider here – the binary switch, the cascade model
of Fusi et al., and the multivariable model of Benna & Fusi, this combination is approximately
additive (Benna and Fusi, 2016     ). This is because for each of these learning rules, the change in
distribution of synaptic states following the presentation of a memory is approximately
independent of the existing synaptic state. The only dependencies are saturation effects – synapses
which have reached the edge of their dynamic range – which can only lead to sub-additive
behavior. Saturation effects can be avoided by making the dynamic range of synapses sufficiently
large. Thus for these learning rules of interest we may consider additive memory trace
combination to represent a close approximation (and a tight upper bound) on the combined
memory trace strength.

For a reliable memory presented at times t1, …, tR, and a population of synapses using additive
learning rules, the current SNR at time t can therefore be approximated as

If memory presentations occur separated by regular intervals of length , we have

For the binary switch model, m(t) decays exponentially with time constant 1/p, and so the second
term is negligible compared to the first. Hence the learnable timescale of the system is the same as
the memory lifetime, approximately 1/p. For target SNR threshold δ, we require , so

the best possible learnable timescale, optimizing over p, is O ( ).

For the cascade model, m(t) decays as . For t » T the exponential factor dominates,

resulting in the same behavior as the binary switch model. For t «T, the exponential term
approximately vanishes, so the following expression for SNR(t) is a close approximation and tight
upper bound:

Again, for computing learnable timescale we are interested in when t −tR ≈τ, in which case:

https://doi.org/10.7554/eLife.90793.1


Jack Lindsey et al., 2023 eLife. https://doi.org/10.7554/eLife.90793.1 38 of 50

For the multivariable model, m(t) decays as . Again we are primarily interested in

the t « T regime, in which the expression for SNR(t) is approximately

This SNR is maximized for T ≈ R · τ. And for computing learnable timescale we are interested in
when t − tR ≈ τ. So we have

To compute the learnable timescale at target SNR δ for 1 « R « τ, we have 4NR ≥τ log(Rτ)δ2, the
solution of which is within logarithmic factors of O(RN).

The above calculations assume deterministic interarrival intervals of length τ. In general, we are
interested in an interarrival distribution p(I) with mean τ. However, we show numerically that for
Weibull distributions with reasonable values of k (not too close to zero), the true learnable
timescale figures are very bounded very closely to our results above (Fig. S9     ). Moreover, for the
purpose of computing learnable timescale  with error probability tolerance ∈, for sufficiently

small E the deterministic approximation represents an upper bound on the SNR for distributions
with mean τ. This is because to ensure high SNR with very high probability, deterministic intervals
are a best case scenario, as stochastic interval lengths will with some nonzero probability deviate
far above the mean.

https://doi.org/10.7554/eLife.90793.1
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Bounds on an ideal synaptic consolidation model
In this section we show that no realistic synapse-local mechanism can achieve significantly better
learnable timescale than (RN), and hence that the ability of recall-gated systems consolidation to
achieve learnable timescale scaling superlinearly with R in some environments (see previous
section) represents a qualitative advantage.

We consider a very general class of synaptic learning rules. In particular, we suppose a synapse
can main tain a history of sequences of potentiation and depression events for arbitrarily long
time windows and track the number of windows for which Δ, the difference in number of
potentiation and depression events, exceeds a threshold δ. Let preliable(Δ; τ) refer to the probability
distribution of values of Δ after τ timesteps, given that a synapse is potentiated by the reliable
memory of interest – and punreliable refers to the analogous distribution for synapses subject only
to potentiation by unreliable memories. After  intervals of length τ, for a synapse potentiated by

the reliable memory, we have that

The memory can be considered retrievable with SNR of order 𝒪 (1) once the expression above
exceeds  (since evidence can be accumulated across the N synapses) for any choice of τ (since

we are interested in the best achievable performance).

Now, for large enough τ, punreliable(Δ; τ) is approximately Gaussian with mean 0 and standard
deviation.  Conditioned on the reliable memory being presented r times in τ timesteps,

preliable(Δ) is approximately Gaussian with mean r and standard deviation . The KL

divergence between these two distributions is . Now consider the distribution p (r) of number of

repetitions r that occur in a time window τ. We want to find a value rmax such that.
 From there we can assume that r < rmax in any of the τ -length intervals,

since after T timesteps we cannot reliably count on r exceeding rmax in any of the intervals.

For τ ≤ M [I], the median of the distribution p(I), note that rmax ≤ log(T/τ) ≤ log T. For τ ≤ c·M [I], if R
> c log T then at least one interval of less than length M [I] contains at least log T repetetions.
Hence rmax ≤ c log T. So conservatively we can take .

Thus, our log probability expression above is bounded as follows

Hence the KL divergence criterion becomes

https://doi.org/10.7554/eLife.90793.1
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or equivalently,

The number of repetitions is R ≈ T/𝔼 [I], giving

assuming M [I] ∼O(𝔼 [I]). For the interarrival distributions we consider (of the Weibull family), M
[I] < 𝔼 [I] so this is a conservative assumption. Hence the learnable timescale of any population
using only synapse-local learning rules is no greater than the solution for 𝔼 [I] of the equation
above. We have

the solution of which is within logarithmic factors of 𝒪(RN).

https://doi.org/10.7554/eLife.90793.1
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Scaling behavior of the STM/LTM model
In the recall-gated consolidation model, the overlap r = wSTM ·ΔwSTM indicates the recall strength
of memory x given the current synaptic state of the STM. LTM plasticity is modulated by a factor
g(r) – we refer to g as the “gating function” and r as the STM recall strength. We assume for now
that the gating function g(r) is chosen to be a threshold function, g(r) = H(r −θ), where r is the SNR
of the memory overlap, H is the Heaviside step function, and θ is referred to as the “consolidation
threshold.” With this choice, unreliable memories will be consolidated at a rate of 1 −Φ(θ), where
Φ is the CDF of the normal distribution, in the limit of large system size N.

Suppose a memory Δw is presented twice with interval I. Then the SNR at the second presentation
will be lower-bounded by m(I), in expectation. It follows that the rate at which reliable memories
will be consolidated at for the gating function above is lower bounded by P (I < m−1(θ)). After R
repetitions of the reliable memory, the probability that consolidation has occurred will be at least

We are interested in the maximum θ for which this expression exceeds 1 −ϵ – this is the most
stringest consolidation threshold we can set while still ensuring consolidation of the reliable
memory with high probability. This value of θ is given by

If R is large then the solution will be such that P (I < m−1(θ) is small, enabling the approximation:

For tractability we consider, as our family of interarrival distributions, Weibull distributions with
regularity parameter k. The cumulative distribution function is

For t << τ, this is approximated as

Importantly, P (I ≤t) decays as tk. Thus, increasing the number of repetitions R has the effect of
scaling the τ that satisfies Equation 39      by R1/k. That is, for a fixed θ, and hence a fixed degree of
amplification τLTM /τ of the effective rate of reliable memories in the LTM, the maximum τ
achieving that SNR with probability 1 − ϵ (i.e. the learnable timescale ) scales as 𝒪(R1/k).

For a gating function threshold θ, the corresponding SNR in the LTM will be the SNR induced by an
interarrival distribution ILTM with mean value

Since 1 − Φ(θ) decays much more rapidly than any power of m−1(θ), it follows that E [ILTM] can be
made O(1), and thus the SNR of the LTM can become , for relatively small values of θ

(and hence a small number of required repetitions). In other words, for a fixed number of
expected memory repetitions, the learnabletimescale of the LTM decreases only slightly as the
target SNR is raised from O(1) to .
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Note that if P different reliable memories are present, then 𝔼 [ILTM] for any given reliable memory
will be lower-bounded by 𝒪(P) instead of 𝒪(1). The induced SNR forany given reliable memory in
the LTM will in this case be of order m(P), rather than .

https://doi.org/10.7554/eLife.90793.1
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Optimal sparsity calculations
We now consider the case of sparse memories – those which potentiate a fraction f of synapses.
Consider the behavior of a single population of binary synapses employing the binary switch
plasticity rule. We modify the plasticity rule slightly so that potentiation flips the state of a synapse
with probability p and depression with probability , to ensure that the fractions of

potentiated and depressed synapses remain balanced.

We consider an environment with a single reliable memory that is presented with probability λ at
each time step (otherwise, a randomly sampled unreliable memory is presented). We can compute
the behavior analytically by tracking how the distributions of u (the output neuron response to
true stimuli) and v (the output neuron response to noise) evolve over time. We assume that the
coding level f is sufficiently small that terms of order O(f 2) may be ignored.

Due to the balanced plasticity rule,  of synapses are strong at any given time, so the mean

response v∗ to a randomly sampled noise pattern is . The variance of v is also constant and equal

to .

The evolution of u is a stochastic process that, in the limit of large Nf (i.e. a large number of active
neurons for each stimulus), can be described as an Ornstein-Uhlenbeck (OU) process:

where ϵ ∼ N (0, σ2)

In the limit of small f we have:

The quantity u∗ determines the asymptotic mean of u and the quantity θ determines the rate at
which u converges to this mean. Immediately we see that u∗ scales with the frequency λ with
which the true stimulus is presented, and that the rate of convergence (speed of learning) is
proportional to p.

By well-known properties of OU processes, the asymptotic variance of u is equal to . In the

small-p limit, this quantity comes out to

Note that in the low-p limit (slow learning rate) this is the same as the variance of v. Thus in the
limit of slow learning, we have that

https://doi.org/10.7554/eLife.90793.1
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And thus

From this expression we can see that for a given f, the asymptotic SNR always increases with λ and
N. For a given λ, we would like to maximize this expression with respect to f .

This expression equals zero when

so the asymptotic SNR is maximized for . That is, the optimal coding level is proportional

to the frequency with which reliable (as opposed to unreliable) stimuli are observed in the
environment.

https://doi.org/10.7554/eLife.90793.1
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Reviewer #1 (Public Review):

Summary:

The authors develop a memory consolidation theory utilizing the recall quality in the short-
term memory system to decide what to consolidate in the long-term memory (LTM). The
theory is based on a set of previously proposed models identifying memories and synaptic
weights (without neuronal activity) with an addition of the second set of weights responsible
for long-term storage. The rigorous analysis and numerical experiments show that under
some assumptions, the long-term system achieves a high signal-to-noise ratio, particularly
much higher than concurrently learning or localized in the same synapses LTM.

Strengths:

The authors take on an important problem of designing robust memory consolidation that
fits the numerous experimental observations and, to a large extent, they succeed. The
proposed solution is general and generalized to multiple contexts. The mathematical
treatment is solid and convincing.

https://doi.org/10.7554/eLife.90793.1
http://orcid.org/0000-0003-0930-7327
http://orcid.org/0000-0003-2422-6576
https://creativecommons.org/licenses/by/4.0/


Jack Lindsey et al., 2023 eLife. https://doi.org/10.7554/eLife.90793.1 49 of 50

Weaknesses:

The presented model seems to be tuned for learning repetitive events. However, single-shot
learning, for example, under fear conditioning or if a presented stimulus is astonishing,
seems to contradict the proposed framework. I would assume that part of the load could be
taken by a reply system that could vigorously replay more surprising events, but it seems to
still not exactly match the proposed scheme.

For context, I would like to see the comparison/discussion of the wide range of models on
synaptic tagging for consolidation by various types of signals. Notably, studies from Wulfram
Gerstner's group (e.g., Brea, J., Clayton, N. S., & Gerstner, W. (2023). Computational models of
episodic-like memory in food-caching birds. Nature Communications, 14(1); and studies on
surprise).

The models that are taken for comparison with the slow but otherwise identical to STM LTM
could be incapable per design. Reducing the probability of switching independently of the
previous presentation does not make the system "slow"; instead, it should integrate previous
signals (and thus slowly remove independent noise).

The usage of terms and streamlining of writing could be improved for better understanding.

Reviewer #2 (Public Review):

Summary:

In the manuscript "Recall-Gated Consolidation: A Model for Learning and Memory in Neural
Systems," the authors suggest a computational mechanism called recall-gated consolidation,
which prioritizes the storage of previously experienced synaptic updates in memory. The
authors investigate the mechanism with different types of learning problems including
supervised learning, reinforcement learning, and unsupervised auto-associative memory.
They rigorously analyse the general mechanism and provide valuable insights into its
benefits.

Strengths:

The authors establish a general theoretical framework, which they translate into three
concrete learning problems. For each, they define an individual mathematical formulation.
Finally, they extensively analyse the suggested mechanism in terms of memory recall,
consolidation dynamics, and learnable timescales.

The presented model of recall-gated consolidation covers various aspects of synaptic
plasticity, memory recall, and the influence of gating functions on memory storage and
retrieval. The model's predictions align with observed spaced learning effects.

The authors conduct simulations to validate the recall-gated consolidation model's
predictions, and their simulated results align with theoretical predictions. These simulations
demonstrate the model's advantages over consolidating any memory and showcase its
potential application to various learning tasks.

The suggestion of a novel consolidation mechanism provides a good starting point to
investigate memory consolidation in diverse neural systems and may inspire artificial
learning algorithms.

Weaknesses:

I appreciate that the authors devoted a specific section to the model's predictions, and point
out how the model connects to experimental findings in various model organisms. However,
the connection is rather weak and the model needs to make more specific predictions to be

https://doi.org/10.7554/eLife.90793.1


Jack Lindsey et al., 2023 eLife. https://doi.org/10.7554/eLife.90793.1 50 of 50

distinguishable from other theories of memory consolidation (e.g. those that the authors
discuss) and verifiable by experimental data.

While the article extensively discusses the strengths and advantages of the recall-gated
consolidation model, it provides a limited discussion of potential limitations or shortcomings
of the model, such as the missing feature of generalization, which is part of previous
consolidation models. The model is not compared to other consolidation models in terms of
performance and how much it increases the signal-to-noise ratio. It is only compared to a
simple STM or a parallel LTM, which I understand to be essentially the same as the STM but
with a different timescale (so not really an alternative consolidation model). It would be nice
to compare the model to an actual or more sophisticated existing consolidation model to
allow for a fairer comparison.

The article is lengthy and dense and it could be clearer. Some sections are highly technical
and may be challenging to follow. It could benefit from more concise summaries and visual
aids to help convey key points.

Reviewer #3 (Public Review):

Summary:

In their article "Theory of systems memory consolidation via recall-gated plasticity ", Jack
Lindsey and Ashok Litwin-Kumar describe a new model for systems memory consolidation.
Their idea is that a short-term memory acts not as a teacher for a long-term memory - as is
common in most complementary learning systems - but as a selection module that
determines which memories are eligible for long-term storage. The criterion for the
consolidation of a given memory is a sufficient strength of recall in the short-term memory.

The authors provide an in-depth analysis of the suggested mechanism. They demonstrate that
it allows substantially higher SNRs than previous synaptic consolidation models, provide an
extensive mathematical treatment of the suggested mechanism, show that the required recall
strength can be computed in a biologically plausible way for three different learning
paradigms, and illustrate how the mechanism can explain spaced training effects.

Strengths:

The suggested consolidation mechanism is novel and provides a very interesting alternative
to the classical view of complementary learning systems. The analysis is thorough and
convincing.

Weaknesses:

The main weakness of the paper is the equation of recall strength with the synaptic changes
brought about by the presentation of a stimulus. In most models of learning, synaptic changes
are driven by an error signal and hence cease once the task has been learned. The suggested
consolidation mechanism would stop at that point, although recall is still fine. The authors
should discuss other notions of recall strength that would allow memory consolidation to
continue after the initial learning phase. Aside from that, I have only a few technical
comments that I'm sure the authors can address with a reasonable amount of work.
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