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Recent technological advances have enabled measurement of the
synaptic wiring diagram, or ‘connectome’, of large neural circuits or
entire brains. However, the extent to which such data constrain models

of neural dynamics and function is debated. In this study, we developed a
theory of connectome-constrained neural networks inwhich a‘student’
network is trained to reproduce the activity of aground truth ‘teacher’,

representing a neural system for which a connectome is available. Unlike
standard paradigms with unconstrained connectivity, the two networks
have the same synaptic weights but different biophysical parameters,
reflecting uncertainty in neuronal and synaptic properties. We found that

aconnectome often does not substantially constrain the dynamics of
recurrent networks, illustrating the difficulty of inferring function from
connectivity alone. However, recordings from a small subset of neurons
canremove this degeneracy, producing dynamics in the student that
agree with the teacher. Our theory demonstrates that the solution spaces
of connectome-constrained and unconstrained models are qualitatively
different and determines when activity in such networks can be well
predicted. It can also prioritize which neurons to record to most effectively
inform such predictions.

Establishing links between the connectivity of large neural networks
and their emergent dynamics is a major goal of theoretical neurosci-
ence. Many studies have attempted to develop methods to infer syn-
aptic connectivity from functional correlations derived fromrecorded
neural activity. However, this ‘inverse problem’” has proven to be chal-
lenging and often ill-posed'®, due to the degeneracy of the space of
network connectivities that produce similar dynamics. Suchinference
is particularly difficult when neural dynamics are low dimensional or
otherwise structured'.

The recent availability of comprehensive synaptic connectome
datasets hasled toapproachesthatfocusinstead onthe ‘forward prob-
lem’ of predicting neural dynamics from synaptic connectivity. The

scale of suchdatasets hasincreased rapidly, from the 302 neurons of the
nematode Caenorhabditis elegansidentified decades ago® to recently
acquired volumes containing entire nervous systems of Drosophila lar-
vae’ and adults®'°and larval zebrafish". Several studies have compared
connectomes with functional connectivity based on activity correla-
tions between neuronsinthe resting state or in response to optogenetic
perturbations'. This has highlighted notable differences for certain
systems®. A complementary line of research has used connectome
information to initialize or build explicit priors on the distribution
of the parameters of neural network models'". In some cases, these
models are then optimized to perform computations, and it has been
found empirically that such biological constraints sometimes yield
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models with improved abilities to predict neural data’ ™. However,
the ill-posedness of the inverse problem and lack of one-to-one cor-
respondence between structure and function call into question the
reliability of such predictions.

A major challenge for connectome-constrained models is
uncertainty in biophysical parameters that affect neural dynam-
ics. Connectomes generated from electron microscopy imaging
provide information on structural connections, neurotransmitter
identities of chemical synapses'®?® and connection strengths esti-
mated by synapse count” or volume?>. However, other biological
processes are undetermined, such as the neuromodulatory envi-
ronment, existence of electrical synapses and functional properties
of individual neurons and synapses®. Changes in such parameters
were previously shown to produce dramatic alterations in network
activity** 7.

In the present study, we develop a theory of the solution spaces
of networks with specified synaptic weights but unmeasured and
heterogeneous single-neuron biophysical parameters®®*’, We use a
‘teacher-student’ paradigminwhich the activity of a ‘student’ network
istrained toreproduce the activity of a ‘teacher’ network. The teacher
is a synthetic model that represents ground truth, analogous to bio-
logical circuits for whicha connectomeis available and from which we
canrecord activity. Unlike previous theories in which the student and
teacher neurons have the same input-output function and synaptic
weights are trained"*°, here the two networks have the same weights,
but their biophysical properties differ a priori.

We found that training a connectome-constrained student net-
work to generate the task-related readout of the teacher does not
always produce consistent dynamics in the teacher and student.
Multiple combinations of single-neuron parameters, each produc-
ing different activity patterns, can equivalently solve the same task.
However, when connectivity constraints are combined with record-
ings of the activity of a subset of neurons, this degeneracy is broken.
The minimum number of recordings depends on the dimensionality
of the network dynamics, not the total number of neurons. This con-
trasts with student networks whose connectivity is unconstrained,
which always display degenerate solutions. Interestingly, even when
neural activity is well reconstructed, single-neuron parameters are
often not recovered accurately, suggesting that some combinations
of parameters are ‘stiff’, with strong effects on neural dynamics,
whereas others are ‘sloppy’, with weak effects. Our qualitative pre-
dictions hold across a variety of simulated networks and networks
constrained by true connectomes frominvertebrates and vertebrates.
Our theory canalso rank neurons that should be recorded with higher
priority to maximally reduce uncertainty in network activity, suggest-
ing approaches that iteratively refine network models using neural
recordings.

Results

Teacher-student recurrent networks

To explore how a connectome constrains the solutions of neural net-
work models, we studied ateacher-student paradigm®-**: arecurrent
neural network (RNN) that we call the teacher is constructed, and the
parameters of a student RNN are adjusted to mimic this teacher. The
teacher is used as a proxy for a neural system whose connectome has
been mapped and whose output or neural activity can be recorded.
To develop our theory, we will begin by examining synthetic teacher
networks whose activity and function we specify. Later, we will consider
teacher networks derived from empirical connectome data.

Both teacher and student are composed of N firing rate
neurons, in which the activity of neuron i is described by a con-
tinuous variable r/(t) (see Methods for details). The activity is
a nonlinear function, which we call the activation function, of the
input current x,(¢) received by the neuron and depends on a set of
single-neuron parameters. For instance, if we describe this function

using parameters g; and b; for neuron i’s gain and bias, its activity is
given by

ri() = gi¢ (x(O + by), (1

where ¢ is a nonlinear function. The network dynamics follow:
dx; u
Td—tl =-X;+ z _/Urj + I,(t), (2)
Jj=1

where J; is the synaptic weight from neuron j to neuron i, and
I(t) is the time-varying external input received by neuron i. For
connectome-constrained networks, we begin by assuming that both
the presence or absence of a connection between neurons as well
as the strengths of these connections are known, and, thus, J;is the
same for both teacher and student. Additionally, we assume that the
external inputs and initial state x(¢ = 0) are the same for teacher and
student (Discussion).

Note that the number of unconstrained parameters in the stu-
dent network scales differently depending on whether single-neuron
parameters or connectivity parameters are fixed. There are N* free
synaptic weight parameters if the connectivity is unspecified, as in
previousstudies of teacher-student paradigms®-*%. On the other hand,
for connectome-constrained networks, the number of unconstrained
parameters is proportional to N. For example, when we parameterize
theactivation functions of neurons with gains and biases, asinequation
(1), there are 2N unknowns.

Student network constrained by task output

We first asked whether teacher and student networks that share the
same synaptic weight matrix exhibit consistent solutions when the
studentis trained to reproduce atask performed by the teacher (Fig.1).
Because we are interested in whether connectivity constraints yield
mechanistic models of the teacher, we measure the consistency of solu-
tions using the similarity of the activity of neurons in the teacher and
those same neuronsinthe student. Suchadirect comparisonis possible
because the connectome uniquely identifies each individual neuron.
We also measure the similarity of teacher and student single-neuron
parameters. We refer to the dissimilarity between teacher and student
activities or parameters as the ‘error’ associated with each respective
quantity. We note that our notion of similarity between teacher and
studentis more precise than requiring similarity of collective dynam-
ics as measured through dimensionality reduction methods, such as
principal componentanalysis. Indeed, matching such dynamics can be
accomplished by recording asmall number of neurons without access
toaconnectome®>*,

Webuiltateacher network that performs aflexible sensorimotor
task. Specifically, the network implements a variant of the cycling
task®, which requires the production of oscillatory responses of differ-
entdurations in response to transient sensory cues (Fig. 1a and Meth-
ods). Inthe network, firing rates are a non-negative smooth function
oftheinput currents, and the unknown single-neuron parameters are
the gains and biases (Fig. 1b, left). The synaptic weight matrix is sparse,
and neurons are either excitatory or inhibitory (Fig. 1b, right).

We trained multiple students to generate the same readout as
the teacher. Each student is initialized with different gains and biases
before being trained via gradient descent. Trained networks success-
fully reproduce the teacher’s readout (Fig. 1c,f). However, the errorin
the neural activity of the student, compared to the teacher, increases
over training epochs (Fig.1d). As abaseline, we computed the error of a
student whose neurons match theactivities of allneuronsin the teacher
but with shuffled identities (gray line in Fig. 1d). In this baseline, the
manifold of neural activity is the same in teacher and student but not
the activity of single neurons. In all networks, the error in activity after
training remains above this baseline, indicating that training does not
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Fig. 1| Task-trained networks with the same connectivity. a, A teacher RNN
istrained to generate two different readout sequences in response to input
pulses that produce two different patterns of activation (gray and black). b,
Properties of the teacher RNN. The teacher RNN has heterogeneous single-
neuron parameters (gains and biases of activation functions, left) and sparse
connectivity with connection probability p = 0.5 (right), and neurons connect
through either excitatory (E, red) or inhibitory (I, blue) synapses. ¢, Student
networks with the same synaptic weights as the teacher are trained to produce
the teacher’s output. Errorin the readout (training loss, mean squared error) asa

function of training epoch. Each colored line corresponds to a different student
network.d, Error (mismatch in neural activity) between teacher and student
RNNs. Gray line, for reference, corresponds to the average error in activity when
the student reproduces the teacher’s activity but with shuffled neuron identities.
e, Errorin gains and biases versus training epoch. f, Readout of teacher and
student networks after training, for the two trial types (top and bottom). Teacher
and student networks both solve the task. g, Neural activity of an example
excitatory (left) and inhibitory (right) neuron. Teacher and student neurons
exhibit different single-neuron dynamics. Exc., excitatory; Inh., inhibitory.

produce a correspondence between the function of individual teacher
and student neurons. Examining the activities of individual neurons
shows that neuronal dynamics across different student networks are
highly variable, and all students differ from the teacher (Fig. 1g).

Finally, we examined the error in single-neuron parameters
between teacher and student (Fig. 1e). The error in gains varies little
over training and is similar toarandomly shuffled baseline. Theerrorin
biases grows slightly but remains within the same order of magnitude
asthebaseline.

We conclude that knowledge of synaptic weights and task output
isnotalways enough to predict the activity of single neuronsinrecur-
rent networks. For the task we considered, there is adegenerate space
of solutions, with different combinations of single-neuron gains and
biases, that solve the same task. There may be scenarios for which this
degeneracy is reduced, such as small networks optimized for highly
specific functions or networks trained on complex or high-dimensional

task spaces (Discussion). Nonetheless, our results show that, even with
N? connectivity constraints, task-optimized neural dynamics are, in
general, highly heterogeneous.

Student network constrained by activity recordings

We next asked whether these conclusions change if, instead of record-
ing only task-related readout activity, we record the activity of a sub-
set of neurons in the teacher network. We use M < Nto denote the
number of recorded neurons. Students are trained to reproduce this
recorded activity, which provides additional constraints on the solution
space (Fig. 2a,b). The recording of subsampled activity in the teacher
is analogous to neural recordings in imaging or electrophysiology
studies, where only a subset of neurons is registered. We trained two
types of student networks: students that have access to the teacher
connectome and students that are not constrained in connectivity.
For connectome-constrained students (Fig. 2c,e), single-neuron
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Fig. 2| Predicting activity of unrecorded neurons when the activity of a
subset of the network is observed. a, The student RNN is trained to mimic the
activity of Mrecorded neuronsinateacher RNN. b, Error in recorded activity
(loss) versus training epoch for students with trained single-neuron parameters
(left) and students with trained synaptic weights (right). Lines correspond to
different numbers of recorded neurons M and show mean over 10 random seeds.
Error bandsin all panelsindicate ts.e.m. All students successfully reproduce the
recorded activity of the teacher after training. c, Left, error in activity of the
N-Munrecorded neurons versus training epoch. Right, error in unrecorded
neuronal activity after training, as a function of number of recorded neurons
M.Smaller dots correspond to each of the 10 trained students. Error is
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substantially reduced when recording from M > 30 neurons. The error
corresponding to zero recorded neurons (black dots) is the error of the student
network prior to training, with random single-neuron parameters. Gray line
denotes shuffled baseline as in Fig. 1d. d, Analogous to ¢ but training synaptic
weightsinstead. The error in the activity of unrecorded neurons remains high
across values of M. The M dependence is a consequence of the procedure of
matching neurons across teacher and student (Methods). e, Error in gains and
biases versus training epochs. Left, parameters of recorded neurons. Right,
parameters of unrecorded neurons. f, Analogous to e for synaptic weights of
recorded neurons (left) and unrecorded neurons (right). act., activity; Rec.,
recorded; conn., connectivity.

parameters of both recorded and unrecorded neurons are unknown
and, therefore, trained. For students with unconstrained connectivity,
synaptic weights are trained instead. In this case, the single-neuron
parameters of the student are set equal to those of the teacher so that
the networks differ only in synaptic weights (Fig. 2d,f). Additionally,
because there is no direct map between unrecorded neurons in the
teacher and the student when the connectome is not known, after
training we searched for the mapping between student and teacher
neurons that minimizes the mismatch in unrecorded activity at each
training epoch (Methods).

We found that both connectome-constrained and unconstrained
students are able to mimic the activity of the Mrecorded teacher neu-
rons with small errors (Fig. 2b; the teacher has N=300 neurons). We
then asked whether this holds for the unrecorded neurons. When the
connectivity is provided (Fig. 2c), the error for unrecorded neuronsis
reduced to values similar to the error for recorded neurons when more
than M*=30 neurons are recorded (example task outputs are shown
in Extended Data Fig. 1). In comparison, when training the synaptic
weights (Fig. 2d), unrecorded neuron activities are not recovered sub-
stantially better than baseline even when most neurons are recorded.

Thus, connectome-constrained, but not unconstrained, networks
produce consistent solutions when Mis large enough.

We then assessed whether the students’ parameters converge to
those of the teacher. For connectome-unconstrained students, the
error insynaptic weights remains high, for connections betweenboth
recorded and unrecorded neurons (Fig. 2f). We may expect this to occur
given that the activity of unknown neurons in these networks is not
well predicted (Fig. 2d). More surprisingly, errorsin the single-neuron
parameters of connectome-constrained networks also remain high,
evenwhentheactivity of unrecorded neuronsis well predicted (Fig. 2e).
We did not find qualitative differences in the behavior of single-neuron
parameters for recorded and unrecorded neurons.

Thus far, we focused on a teacher whose neural activity is pri-
marily generated through recurrent interactions, triggered by brief
external pulses. We further explored whether similar results hold in
networks driven by atime-varying external input (Extended DataFig.1).
Additionally, we systematically varied the distributions of gains and
connection sparsity (Extended Data Fig. 1). In all these networks, the
qualitative dependence of the error on Mwas unchanged. Nevertheless,
the error in unrecorded neural activity prior to training is different in
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constrained to atwo-dimensional linear subspace. Right, variance screeplot.
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empirical average and s.e.m. for each network size (10 networks per condition).
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dimensional dynamics.f, Error in the activity of unrecorded neurons after
training. Larger networks require recording fromalarger number of neurons
Mto predict unrecorded activity. Data are presented as mean + s.e.m. over 10
networks, as in c. Inset: number of neurons M*needed to predict unrecorded
activity above a certain threshold (set to 0.2; dotted line), as a function of
network size. act., activity; Rec., recorded; Var. expl., variance explained.

networks with strong inputs or weak recurrent connections. Unlike
in Fig. 2, where the error prior to training is similar to a baseline with
randomly shuffled neuronidentities, the error for strongly input-driven
networks lies below this baseline even before training. Thus, although
certainfeatures of neural activity may be predictable even withrandom
parameters when theinputis known,improving upon thisinitial base-
line through training requires sufficiently many recorded neurons.

Insummary, connectome-constrained networks are able to predict
the activity of unrecorded neurons when further constrained by the
activity ofenough recorded neurons. By contrast, networks without a
connectome constraint do not predict unrecorded activity. Neverthe-
less, inall cases, the unknown parameters are not precisely recovered,
suggesting that multiple sets of biophysical parameters lead to the
same neural activity.

Required number of recorded neurons is independent of
network size

What features of aconnectome-constrained RNN determine how many
recorded neuronsare required to predict unrecorded activity? We con-
sidered two alternatives: the required number is afixed fraction of the
total number of neurons in the network or the number is determined
by properties of the network dynamics. The former alternative would
pose achallenge for large connectome datasets.

To disambiguate these two possibilities, we examined a class of
teacher networks whose population dynamics are largely independ-
ent of their size N. We generated networks with specific rank-two con-
nectivity that autonomously generate a stable limit cycle®® (Fig. 3a
and Methods). In these networks, the currents received by each neu-
ron oscillate within a two-dimensional linear subspace, independent
of N (Fig.3b).

We found no difference in a plot of error in unrecorded activ-
ity against number of recorded neurons M, for networks of different
sizes (Fig.3c), suggesting that accurate predictions can be made when
recording from few neurons, evenin large networks. Examining more
closely the dependence of the error on M, we observed thatwhen M =1,
the student produces oscillatory activity with the same frequency as
theteacher, but the activity of unrecorded neurons exhibits consistent
errors at particular phases of the oscillation (Extended DataFig. 2). By
contrast, when M =7, errorsinrecorded and unrecorded neurons are
similarly small.

This led us to hypothesize that the number of recorded neurons
requiredtoaccurately predict neural activity scales with the dimension-
ality of the neural dynamics, not the network size. This would explain
why networks with widely varying sizes but similar two-dimensional
dynamics exhibit similar performance (Fig. 3¢). To further test this
hypothesis, we studied asetting in which we trained students to mimic
another class of teacher networks: strongly coupled random networks®
(Fig. 3d). In such networks, activity is chaotic, and, unlike low-rank
networks (Fig. 3b), the linear dimensionality of the dynamics grows
inproportionto N(ref.38),adependence that we verified for the time
windows we considered (Fig. 3e). In this case, the required number of
recorded neurons also grows proportionally with N (Fig. 3f). Together,
these results suggest that recording from a subset of neurons, on the
order of the dimensionality of network activity, is sufficient to predict
unrecorded neural activity. Later, we will show that this numerical result
is consistent with the predictions of an analytical theory.

Robustness to model mismatch
Thus far, we have considered teacher and student networks that belong
to the same model class of firing rate networks with parameterized
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activation functions and connectivity. However, models based on
experimental data will possess some degree of ‘model mismatch’ due
to unaccounted or incorrectly parameterized biophysical processes.
Moreover, errorsin synaptic reconstruction and inter-individual vari-
ability in connectomes imply that synaptic weight estimates may also be
imprecise®. Inthis section, we examine whether our qualitative results
hold when teacher and student exhibit model mismatch.

We used the same teacher as in Figs. 1and 2. To study the case of
mismatchinactivationfunction (Fig. 4a), we parameterized the activa-
tion functionwith 8, which controls the smoothness of the rectification,
and used different values of ffor student and teacher (Fig.4b). Larger
mismatchincreasestheerrorinbothrecorded and unrecorded activity
(Fig.4c). Theeffectis strongestin an extreme case of very small student
B, forwhichvery little rectification occurs. This makes it difficult for the
student to match even the recorded activity of the teacher (Fig.4cand
Extended Data Fig. 3). Nevertheless, up to a considerable mismatch,
there is a steep decrease in the error in unrecorded activity as more
neurons are recorded.

Can model mismatch arising from single-neuron properties
be compensated by allowing the synaptic weights to be trained,
which introduces additional free parameters? We examined a stu-
dent with activation function mismatch and a synaptic weight
matrix that was initialized equal to that of the teacher but then
trained (Extended Data Fig. 3). This performed worse than train-
ing single-neuron parameters, arguing against the feasibility of
this approach. An alternative approach is to increase the number of
single-neuron parameters. For instance, when S is trained together
with gains and biases, the error in unrecorded activity is similar to
the case without mismatch (Extended Data Fig. 3). We conclude that
parameterizing uncertainty in activation function is important for
dealing with this form of model mismatch.

We next considered mismatch between teacher and student con-
nectomes. To simulate such errors, we added Gaussian noise to the
strengths of existing connections and added spurious connections with
probability o (Fig. 4d and Methods). The resulting corrupted synaptic

weight matrix was used by the student. Noise in the synaptic weight
matrix shiftsits eigenvalues (Fig. 4e) and modifies the corresponding
eigenvectors. Trained students exhibit smooth increases of the error
inrecorded and unrecorded activity as this noiseis increased (Fig. 4f).
However, we again found a steep decrease of the error in unrecorded
neural activity with M, suggesting that this qualitative behavior is not
overly sensitive to connectome reconstruction errors.

Teacher networks constrained by empirical connectomes

Thus far, we have examined synthetic teachers, whose connectivity
statistics and functional properties may differ from those of biological
networks. We next study teachers whose synaptic weights are directly
determined by empirical connectome datasets. We modeled three
neural circuits for which a ground truth connectome is available and
whose function has been characterized: the premotor-motor system
in the ventral nerve cord of larval Drosophila®, the heading direction
systemin the central complex of adult Drosophila®*° and the oculomo-
tor neural integrator in the hindbrain of larval zebrafish*.,

When larval Drosophilae are engaged in forward or backward
locomotion, recurrently connected premotor neurons in the ven-
tral nerve cord drive motor neurons to produce appropriately timed
muscle activity (Fig. 5a, left). Motor neurons in each body segment
are segregated into functional groups whose sequences of activa-
tion differ across the two behaviors (Fig. 5a, right). A previous study
showed that a connectome-constrained RNN recapitulates features
of motor and premotor neuron activity when trained to produce such
sequences in the Al and A2 body segments'®. We used such a model
as a connectome-constrained teacher, whose 178 premotor neurons
produce appropriately timed activity in 52 motor neurons (Methods).
Student networks comprising the premotor circuitry were then trained
to approximate recorded teacher activity. We found that the error in
unrecorded activity is reduced when approximately 10 neurons are
recorded (Fig. 5b). When few neurons are recorded, the errorin activity
is similar to anetwork with randomly chosen single-neuron parameters
(two recorded neurons; Fig. 5c, left). Recording from more neurons
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Fig. 5| Prediction of neural activity in networks with empirical connectome
constraints. a, Left, diagram of premotor neurons (PMNs) and motor neurons
(MNs) insegments Aland A2 of the Drosophilalarva. The model synaptic
weights are determined by a connectome, as in Zarin et al.'®. Right, activity of
MN readouts during forward (FWD, top) and backward (BWD, bottom) crawling.
b, Error (based on the average single-neuron correlation between teacher and
student) in unrecorded activity of PMNs as a function of the number of recorded
neurons. Black dot indicates error before training—that is, the error before
recording any neurons. Arrows indicate number of recorded neurons for which
example traces are shown in the adjacent panel. ¢, Example activity traces of two
unrecorded PMNs in the teacher network and in the student network before and
after training, when two neurons are recorded (left) and when 24 neurons are
recorded (right). Traces are normalized by their maximum value. d, Left, synaptic
weight matrix for neurons of the central complex (CX) of adult Drosophila, based

on the hemibrain connectome’. Right, input and target output of EPG neurons,
which are arranged along the ellipsoid body according to their tuning to heading
direction angle 8 (top). On each trial, the input is a transient bump of activity
presented at arandom orientation. The target output requires this orientation be
heldin a persistent activity state. e, Similar to b for the CX model. f, Similar tod,
example traces of one unrecorded neuron when two different presented stimuli
(one preferred and one non-preferred). Traces are normalized by the mean

firing rate of each neuron across stimuli. g, Left, diagram of synaptic wiring in
the zebrafish brainstem, based on Vishwanathan et al.*.. Right, traces of activity
of three example neurons. There is a slow mode of activity that integrates eye
velocity and is required for the oculomotor reflex. h, Similar tob and e for the
oculomotor integrator model. i, Similar to c and ffor the neurons showning,
right. norm., normalized; unrec., unrecorded.

dramatically improves the prediction (Fig. 5c, right), which s qualita-
tively similar to the results of the synthetic teacher network (Fig. 2c).

Next, we studied the heading direction systemin the central com-
plex of adult Drosophila. This system has been the subject of numer-
ousrecenttheoretical analyses, most of which examined models with
idealized connectivity rather thandirectly incorporating connectome
data******, We modeled a circuit reconstructed in the hemibrain data-
set’ comprising 153 neurons grouped into four cell types: the putatively
excitatory EPG, PEN and PEG neurons and the putatively inhibitory A7
neurons (Fig. 5d). The 46 EPG neurons encode heading orientation and
are arranged along aringin the ellipsoid body based on their angular
tuning. Recurrent connections among EPG neurons and other cell types
form a stable ‘bump’ of neural activity representing heading angle,
consistent with ‘ring attractor’ dynamical models*‘. We, therefore,
constructed a teacher network in which EPG neurons maintained a
bumprepresenting aheading encoded by a brief stimulus (Fig. 5d and
Methods). Student networks without access to recordings generated
neural activity different from the teacher (Fig. 5e, black dots). In par-
ticular, these students did not behave as ring attractors, demonstrating
that the central complex connectivity alone does not guarantee stable

attractor dynamics (Fig. 5f). However, recording from a handful of neu-
rons was enough to place the systemin the correct dynamical regime
and accurately predict the activity of unrecorded neurons (Fig. 5f).

Finally, we studied the oculomotor integrator in the hindbrain
of larval zebrafish. This system persistently tracks eye position by
integrating eye motor commands. The integration is supported by
strong recurrent connections that produce a ‘line attractor’ in neu-
ral activity space. Such dynamics were previously modeled with a
connectome-constrained linear RNN* (Fig. 5g and Methods). We used
this network as the teacher and then trained the gains of student net-
works with the same synaptic weights. Although a random initializa-
tion of gain parameters did not produce the slow timescale necessary
for accurate integration, recording from a few neurons substantially
reducedtheerrorinactivity (Fig. Sh). Thisis consistent with the results
of Vishwanathan et al.”, who adjusted a global gain parameter to pro-
duce aslow timescale.

The weight matrices of empirical connectomes and synthetic
teacher-student networks (Figs. 2 and 3) may exhibit statistical dif-
ferences due to the level of sparsity, heterogeneity in the number and
strength of synaptic connections and other higher-order structure.
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However, in each of these examples, the qualitative phenomena
present in synthetic teacher-student networks are recapitulated.
Recording from a number of neurons determined by the dimension-
ality of the teacher activity (Extended Data Fig. 4)— a handful for the
one-dimensional line attractor or two-dimensional ring attractor
dynamics and approximately 10 for more complex sequential activ-
ity—produces consistent dynamics between teacher and student.

Linear network model

We developed an analytic theory of our connectome-constrained
teacher-student paradigm. The theory aims to explain, first, how
the teacher and student produce the same activity despite different
single-neuron parameters and, second, the conditions under which
the student’s activity converges to that of the teacher.

Webegin withasimplified linear model and later relax our assump-
tions: the teacher and student RNNs have linear single-neuron activa-
tion functions; the only unknown single-neuron parameters are the
biases b; and the synaptic weight matrix / has rank D (Fig. 6a). This
rank constraint implies that recurrent neural activity is confined to a
D-dimensional subspace of the N-dimensional neural activity space.
We focus on the network’s steady-state activity at equilibrium, which
dependslinearly on the biases:

N
ri= ZAljbj’ (3)
J=1

where we have defined A = (/ —j)Tj.

Althoughwe focus here on equilibrium activity, time-dependent
trajectories also yield a linear relation between activity and
single-neuron parameters (see Methods for the time-dependent deri-
vation).For the same reason, we also assume no external input to each
neuron (/(t) = 0). This linear relation between single-neuron param-
etersand activity, which underpins the mathematical tractability of the
simplified model, isaconsequence of the linear network dynamics and
the additive influence of the bias parameters. Choosing multiplicative
gains as the unknown single-neuron parameters, for instance, would
produce anonlinear relation.

The student is trained using gradient descent updates to the
single-neuron parameters. In the limit of small learning rate r, the
learningtrajectory in parameter space can be expressed in continuous
time ¢’ (with ¢ proportional to training epoch) as:

db; S a7 b;—b*
o =1 L AAG (b b)), “)

k=1j=1

where M is the number of recorded neurons. Using these learning
dynamics, we can analytically calculate the expected errorinrecorded
and unrecorded activity and in single-neuron parameters (Fig. 6c and
Methods). Thisreveals a transition to zero error in the activity of unre-
corded neurons when M = D, the rank of the synaptic weight matrix
(Fig. 6¢, gray line). There are, however, large errors in single-neuron
parameters (Fig. 6¢, red line) even when the activity of the full network
isaccurately recovered.

To understand these results, we analyzed the properties of the
loss function, which describes how the difference in activity between
teacher and student depends on single-neuron parameters. We dif-
ferentiate the loss function for the full network, which is determined
by errors in both recorded and unrecorded neural activity, from the
loss function for the recorded neurons, which is the function opti-
mized during training. These loss functions are convex, as illustrated
inFig. 6d. Theminimaare surrounded by a valley-shaped region of low
loss (Fig. 6d, right). We refer to directions for which the loss changes
quickly or slowly as ‘stiff’ or ‘sloppy’ parameter modes, respectively®.
Stiff modes both have the greatest effect on the loss and are learned
most quickly. Each mode’s degree of stiffness is determined by the

corresponding singular value of the matrix A (Methods). A mode is
infinitely sloppy when its associated singular value is zero, implying
that parameter differences between teacher and student along that
mode produce no differences in neural dynamics.

The parameter modes that affect the recorded activities and,
thus, the loss function for the M recorded neurons are determined by
Ay, (the submatrix of A containing the rows corresponding to these
neurons), whose stiff and sloppy modes are generally different from
those of the fully sampled matrix A (Fig. 6e versus Fig. 6f). Recording
from a subset of neurons introduces additional modes with zero sin-
gularvaluewhen M < D, because A,,,. has, at most, Mnon-zero singular
values. The stiff modes of the loss function of the recorded activity
will also, typically, not be fully aligned with those of the fully sampled
system (Fig. 6f, inset), leading to errors in prediction.

To illustrate these results, we plotted the error in single-neuron
activity and biases for M below and above the critical number D
(Fig. 6g,h). Whenrecording from few neurons, the error inthese param-
eters for unrecorded neurons remains high (Fig. 6g, left). The error
in biases quickly converges to a small value along the stiffest mode,
whereasitbarely changes for sloppy modes (Fig. 6g, right). The stiffest
mode of the subsampled network is not completely aligned with the
stiffest mode of the fully sampled network, explaining why it converges
to a small but non-zero value. Only when more neurons are recorded
doestheerrorinunrecorded activity, and along the stiffest parameter
mode, converge to zero (Fig. 6h, left).

The simplified model demonstrates that specific patterns of
single-neuron parameters determine the error between teacher and
student. Stiff parameter modes are learned, whereas sloppy modes
are not. The number of stiff parameter modes is bounded by the rank
of Jand, thus, the dimensionality of neural activity. Recording from
increasingly many neurons provides increasingly many constraints
onthisactivity. When enough neurons are sampled, the stiff modes for
the Mrecorded neurons align with the stiff modes for the full network,
leading to correct prediction of unrecorded activity. These conclusions
donotrelyonthechoice ofgradient descent asalearningalgorithm, as
ananalysis using linear system identification methods yields the same
conclusions (Supplementary Note). We also note that we have assumed
here that the loss functionis determined by the differenceinrecorded
neural activity. However, similar conclusions would be reached ifit were
determined by other linear projections of activity, such as projections
onto task-related dimensions (Discussion).

Loss landscape

We next generalized our theory to nonlinear networks. To facilitate
analysis, we studied a class of low-rank RNNs whose activity can be
understood analytically*****’. We focused on a teacher network with
N=1,000neurons and anonlinear, bounded activation function. Each
neuronis parameterized only by the gain parameter. We designed the
network’s synaptic weight matrix to be rank-two, with two different
subpopulations. For this network, there are only two stiff parameter
modes: the average single-neuron gain for each subpopulation (Fig. 7a).
We set the weights of the teacher to generate two different pairs of
non-trivial fixed points, and werecorded activity as the neural dynamics
approached one of these fixed points (Fig. 7b).

Because the parameter space is two dimensional, we can visual-
ize the loss function for the full network across a grid of parameters
(Fig.7c). The function has a single minimum, similar to the linear model.
However, due to the nonlinearity, the function is non-convex (contour
lines are not convex in Fig. 7c), and the curvature for parameter val-
ues away from the global minimum is different than at the minimum.
Despite this non-convexity, gradient descent on this fully sampled loss
function will stillapproach the single minimum.

We next visualized theloss function for the activity of one recorded
neuron (Fig. 7d). We repeated this for two different choices of the
single recorded neuron, each of which exhibited distinct dynamics
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(black lines in Fig. 7b). For these loss functions, there is an additional
sloppy mode thatis not presentin the fully sampled loss (black valleys
inFig. 7d). These results are similar to those of the linear case, although
duetothe nonlinearity, the sloppy modes correspond to curved regions
in parameter space.

Thesloppy modeis different for each of the two recorded neurons.
When running gradient descent on these subsampled loss functions,
randomly initialized parameter values will evolve toward the dark
regions of Fig. 7d—for example, toward the blue dot when neuron 1is
sampled or toward the red dot when neuron 2 is sampled. However,
both ofthese two solutions produce high errorin unrecorded activity
(Fig.7e,f). Thismismatchin unrecorded activity occurs because record-
ing from asingle neuron constrains activity along only one dimension
ofthe two-dimensional activity space defined by the rank-two synaptic
weight matrix (Fig. 6e).

Totest whether the same insights also apply to nonlinear networks
with high-dimensional parameter spaces, we computed the stiff and
sloppy modes of the fully sampled loss function in the network of
Figs.1and 2. We approximated the loss function in parameter space

tosecond order at the optimum. We then projected the average error
in parameter space, before and after training, along the estimated
stiff and sloppy modes (Fig. 7g,h). When few neurons are recorded,
the average changes in parameter space before and after training are
not aligned with the stiff modes of the loss function. However, when
recording from many neurons, thereis alarge decrease in error along
the estimated stiff modes while the error along sloppy modes barely
changes, as predicted by our theory. Thus, a second-order approxi-
mation of the non-convex loss function qualitatively describes the
behavior of gradient descent. Some other effects of non-convexity,
however, cannot be explained by the linear theory—for instance, the
growth in errors in the bias parameters over the course of training
(Figs.leand 2e).

We conclude that the qualitative behavior of the linear model holds
for the nonlinear networks studied in previous sections. Specifically,
when theloss functionis determined by recordings of asmall number
of neurons, the parameter modes become sloppier on average, and
new sloppy parameter modes are added that do not align with those
of the fully sampled loss function.
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(neuron 1) is small, whereas error for the unrecorded neuron (neuron 2) is large.
Right, similar to left but when neuron 2 is recorded and neuron 1is unrecorded.
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function around the teacher’s values (Methods). Average over 10 realizations. E,
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Optimal selection of single neurons
Thus far, recorded neurons have been selected randomly from the
teacher network. As we have seen, different sets of recorded neurons
define different loss functions and gradient descent dynamics, sug-
gesting the possibility of selecting recorded neurons to minimize the
expected error in unrecorded activity (Fig. 8a). Specifically, we aim
to select recorded neurons to maximize the alignment of stiff modes
of the subsampled loss and those of the fully sampled loss function.
Inthe simplified linear model, subsampling neurons corresponds
to selecting rows of the matrix A that relates single-neuron parameters
toactivity (Fig. 8b).Inthis case, itis possible to exactly determine which
neurons are most informative to record. The most informative neuron

isthe one whose corresponding row A;. overlaps most with the weighted
left singular vectors of A (Methods). The second most informative neu-
ronisthe one whose row overlaps most with the weighted left singular
vectors of A projected onto the space orthogonal to the previously
selected neuron’s row and so on. It is also possible to define the least
informative sequence of recorded neurons by minimizing rather than
maximizing these overlaps. We compared the errorinunrecorded activ-
ity for the most and least informative sequence of selected neurons
as well as random selection, finding that the optimal strategy indeed
improves the efficiency of training (Fig. 8d).

Fornonlinear networks, the mapping between parameters and net-
work activity isalso nonlinear and depends onthe unknown parameters
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in the mapping from parameters to activity assumes homogeneous single-
neuron parameters (Methods). Note the linear scale for the error ing, which
highlights the errors when few neurons are recorded. act., activity; E, excitatory;
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of the teacher (Methods). As a result, the globally optimal sequence
cannot be determined a priori. Nevertheless, the mapping between
parameters and activity can be linearized based on an initial guess of
the single-neuron parameters and theniteratively refined. In practice,
we found thatlinearization works well for nonlinear networks, with the
optimal selection strategy dramatically reducing the error compared
torandom selection, especially when there are few recorded neurons.
For the network studied in Fig. 2, the error using the best 10 predicted
neuronsis 60% smaller than random selection (Fig. 8g).

The singular vectors used to determine which neurons are most
informative depend on the global connectivity structure and cannot
be exactly reduced to any single-neuron property. Such properties,
includingin-degree, out-degree, average synaptic strength or neuron
firing rate, may be correlated with the singular value decomposition
score developed here but are not guaranteed to be good proxies for
informativeness. This argues for the use of models like those studied
here to guide the selection of recorded neurons.

Discussion

Building connectivity-constrained neural network models has become
increasingly viable as the scale of connectome datasets has grown.
Our theory cautions against overinterpreting such models when they
are insufficiently constrained (Fig. 1) but also shows that correctly

parameterized models paired with sufficiently many neural recordings
can provide consistent predictions (Figs. 2and 5). This consistencyisa
consequence of the qualitatively different solution spaces associated
with connectome-constrained and unconstrained models (Figs. 2¢,d
and 7). The theory also suggests that models can be used to inform
targets for physiological recordings (Fig. 8).

Challenges for connectome-constrained neural networks

We have studied the properties of connectome-constrained neural net-
works using simulations of neural activity based on synthetic network
models and three different connectomics datasets'**. Our results
suggest that the ‘forward problem’ of predicting neural activity using
aconnectome is not as ill-posed as the corresponding ‘inverse prob-
lem’ studied previously'. However, although we demonstrated that
this result is robust to model mismatch and inaccuracy in synaptic
reconstruction (Fig. 4), itis likely that, for some neural systems, the
degree of model mismatch is too severe. Such systems likely include
those largely driven by unmodeled processes such as the effects of
neuropeptides or gap junction couplings™*. Moreover, systems for
which the firing rate models described here are a poor match, such as
systems that operate based onspike synchrony rather thanrate codes*®,
highly compartmentalized interactions*’ or dynamics of specific ion
channels®, may be out of reach of the present approach. Nonetheless,
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our results establish that the dynamics in RNNs with order N, rather
than N2, unknown parameters can be accurately predicted.

We also assumed in all our analyses that time-varying external
inputs, together with the initial state, are known. Consistent with
this, recent work using connectome information to infer function has
focused on regions close to the sensory periphery*, where input
statistics are better characterized. We do not expect connectomes to
provide substantial constraints on strongly input-driven neural activity
wheninputs are not controlled.

Relatedly, for our studies of empirical connectomes (Fig. 5), we
modeled systems for which detailed descriptions of the function of
individual cell types exist'®*"*2, This was necessary to generate realistic
teacher activity, asrecordings of neural activity aligned to whole-brain
connectomes are not yet available for the systems that we studied. We
didnotapply our theory to C. elegansrecordings asit hasbeen argued
that chemical synapses are not predictive of functional interactions”.

We note that the parameters in our models may reflect
state-dependent modulation. Neuromodulators, for instance, are
known to modify effective neuronal excitabilities”. In our networks,
gains and biases do not necessarily account for a single biophysical
process but, rather, the coordinated effects of multiple processes. As
long as the timescale of these processes is slower than the dynamics
being predicted, we expect an approach similar to the one described
here tobe appropriate. However, this state dependence may alsoimply
thattheinferred parameters do not generalize to new behavioral states.

Assessment of connectome-constrained solutions
Itisknownthat recordings from M > D different neurons are required to
estimate neural dynamics lying in amanifold of linear dimensionality
D, independent of network size**. Connectome-constrained models
go beyond such population-level descriptions of neural dynamics, as
they are also concerned with how each specific neuron contributes
to global activity patterns. This requires knowledge of unrecorded
neurons’ loadings onto the low-dimensional manifold. Thisbenchmark
is appropriate when such models are used to predict the function of
specific neurons or neurontypes or to guide experiments that manipu-
late specific neurons''*",

The match between student and teacher activities in our models
dependsonmultiple properties. These include whether randomchoices
of single-neuron parameters produce similar dynamicsin the two net-
works (Fig. 3c and Extended DataFig. 1), the extent of model mismatch
(Fig. 4) and the degree to which training the student using activity
recordings may compensate for the mismatch (Extended Data Fig. 3).
These properties depend on specific features of the teacher network.
Recent studies have demonstrated above-chance prediction of func-
tion using uniform or random parametersin models of the Drosophila
nervous system'*’.In one case, accurate predictions of motor neuron
responses to optogenetic stimulation was achieved without any adjust-
ment of single-neuron parameters, which may reflect the presence of
strong and direct excitatory pathways between stimulated neurons
and output neurons™. Inanother case, further training of single-neuron
parameters based on atask objective of detecting visual motionled to
animprovementin predictions”. Onthe other hand, failure of arelated
approachin C. elegans was argued to be a consequence of model mis-
match from unmodeled peptidergic interactions®.

Wefoundthat training student networks to match the teacher only
led to improvements when, in addition to connectivity constraints,
sufficiently many neuron activities were constrained. This result was
independent of the initial performance of the system with random
parameters (Extended Data Fig. 1). We focused on the improvement
that can be achieved through knowledge provided by neural record-
ings, which was motivated by the observation that training the student
only onthetask-related readout of ateacher did not predict unrecorded
neural activity (Fig. 1). However, it is possible that high-dimensional
task readouts may improve predictions. Indeed, for our linear model,

constraining activity along one task-related dimension is analogous
to recording one additional neuron, as both correspond to a linear
projection of the network’s vector of neural activities. Innetworks that
perform multiple tasks or process diverse inputs, recording activity
under multiple task or input conditions may improve the prediction
of unrecorded activity, as has been argued for the Drosophila visual
system'. This would likely require an assumption that single-neuron
parameters are not strongly modulated across these conditions.

Properties of connectome-constrained and unconstrained
network solutions

The loss functions of task-trained feedforward neural networks have
been shown to exhibit multiple minima, with often counterintuitive
geometrical properties®>*. The multiplicity of minima arises from
symmetries such as weight permutations in the network parameteri-
zation®*. It remains unclear whether such ideas extend to recurrent
neural networks. Our results for connectome-constrained networks
are consistent with the existence of asingle minumum or connected set
of minimawith stiff and sloppy parameter modes around the optimal
solution (Fig. 7). The alignment between sloppy parameter modes in
subsampled versus fully sampled loss functions explains the success
ingeneralizing to unrecorded neurons.

Robustness to alarge range of structural parameters and pertur-
bations is a hallmark of biological systems, with a few stiff parameter
combinations determining function®*°, We have shown that thisis
also true of connectome-constrained networks. One consequence of
this observation is that, in underconstrained, data-driven models for
neuroscience and machine learning, the distribution of parameters,
such as synaptic weights or single-neuron excitabilities found after
successful training, may not be predictive of task performance. Our
work arguesin favor of identifying stiff parameter combinationsin such
networks and using these to assess the similarity of network solutions®.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butions and competinginterests; and statements of dataand code avail-
ability are available at https://doi.org/10.1038/541593-025-02080-4.
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Methods

Recurrent network models

We focused on recurrent neural networks where the activity of each
neuron i is described by a continuous variable, a firing rate r,(¢), for
i=1...N. The firing rate of each neuron is calculated by applying
a parametric function to the input x,(¢) that the neuron receives at
each timepoint,

rit) = F(x;6;), )

where 6;denote the single-neuron parameters that modulate the func-
tion F. We denote this input-to-rate function F as the activation func-
tion. The activation function may depend on various single-neuron
parameters 6, such as the gains g;and biases b;in equation (1).

The dynamics of the recurrent neural network follow

dx; N
T = X Ly IO + o). (6)
t =i

The matrix / is the synaptic weight matrix, with each elementJ; indi-
cating the signed synaptic strength of the connection from neuron
to neuron i. The constant 7 indicates the timescale of single neurons.
We assume the same tfor allneurons and set it equal to 1, unless speci-
fied otherwise, such that all other timescales are given in units of 7.
We denote the external input by /,(t), which includes the task-related
input. Additional private white noise may be provided to each neuron,
denoted by n(t).

The dynamical landscape that a network can implement is
thus determined by the order-N single-neuron parameters and
the N? synaptic weights. In the section ‘Teacher RNNs and training
parameters’ below, we specify the choice of activation function,
single-neuron parameters and synaptic weight matrices used in
eachfigure.

Teacher-student: setup and training

We focus on a set of two RNNs. The first is the teacher RNN, which
represents the network whose connectome is known and from which
we can record neural activity. The other is the student RNN, which is
trained (thatis, its parameters are optimized) to match the recorded
neural activity in the teacher. The dynamics of both networks are
determined by equation (6). Asterisks are used to refer to teacher
network parameters.

Unless otherwise specified, the teacher and the student network
share the same synaptic weight matrix/. Additionally, the external input
I(t) and initial conditions x; (r = 0)are the same for teacher and student.
Thenoiseintensity is chosentobe zerointhe teacher, because we focus
onthe case of no measurement noise. The noise intensity in the students
isweak, to provide additional stability over training. The possible struc-
tural differences between teacher and student come from the set of
single-neuron parameters {6;}. These single-neuron parameters are
optimized sothat student activity matchestherecorded activity of the
teacher.InFig.2d and Extended DataFig.1, where we trainstudents with
unconstrained connectivity, we instead set the single-neuron param-
eters to be equal but the synaptic weight matrices to be different in
teacher and student. In these cases, the student synaptic weights
aretrained.

The trained parameters are optimized to minimize the
loss function

1Y .
= [(ECEAGHE %)

where the square brackets denote an average over the timepoints in
the recorded window, and we sorted neurons such that the first M
neurons are those that are recorded. In Fig. 1, instead of defining the

loss based on the recorded activity traces r,(t), we used the task
readout, z = 3w ry(0).

We trained the parameters of the student using standard gra-
dient descent methods applied to time-varying signals: we imple-
mented backpropagation through time via the Adam optimizer
using PyTorch® %, Learning rates varied between 0.0001 and 0.01,
and decay rates of the first and second moments varied between 0.9
and 0.999.

Quantifying performance

We used two different metrics to assess the deviations between teacher
and student. The first is the root mean squared error. For Figs. 3 and
5,networks where the firing rates are very heterogeneous across neu-
rons, or where the temporal profile of the responses is more relevant
(which would be the case when comparing to, for instance, calcium
fluorescence traces), we instead used a correlation-based score, which
is not affected by the average amplitude of the responses. This score
is defined as

Error =1-(p;), (8)

where the angular brackets indicate the mean over neurons i, and p;is
the Pearson correlation coefficient for the i-th neuron:

(O —F) (ri@) - F;
oo [(ri® =) (r; © = 7)) . ©)

J0mo-nr]|(zo-7)]

The square brackets indicate the average across timepoints, and 7; is
the time-averaged activity of the i-th neuron. When there are multiple
trials (Fig. 5a-f), we calculated one score p; per neuron and trial and
then averaged over trials. For Fig. 3c, we took the absolute value of p;
before averaging over neurons, because we were interested in whether
single neurons of the teacher reproduce the oscillatory dynamics of
the teacher,independently of the sign, although our qualitative conclu-
sions do not depend on this choice.

In Fig. 2, to match unrecorded neurons, we paired unrecorded
neurons in the teacher with unrecorded neurons in the student at
each training epoch, by solving the linear sum assignment problem
using the function ‘linear_sum_assignment’ in Scipy. We calculated
the mean squared error between all unrecorded neurons i in the
teacher and unrecorded neurons;j in the student and stored them in
the matrix element C;. The linear sum assignment problem finds the
matrix X such that minimizes ¥ ;,C; X, with the constraint that each
rowin Xmaps exactly onesingle neuronintheteachertooneneuronin
the student.

Teacher RNNs and training parameters

In this section, we detail the choice of single-neuron parameters, the
features of the teacher RNN and the training parameters used in each
figure. Unless otherwise specified, we used At =0.1in units of the
single-neuron time constant. We injected noise at each timestep of
the dynamics with s.d. 0.002. See also the shared code (to be made
available upon publication) for reproducing all the numerical experi-
ments in the study.

Figures 1 and 2. The teacher RNN (N=300) is trained with learning
rate 0.001 during 1,400 epochs to solve the cycling task. The initial
connectivity is chosen as follows. First, each synapse is drawn from a
random Gaussian distribution with mean zero and variance 2.4/y/N.
The sparse weights (fraction p = 0.5) are randomly chosen, set to zero
andnot trained. A fraction p,= 0.7 of neurons selected randomly is set
to be excitatory, such that their synaptic strengths are set to their
absolute value, whereas the remaining fraction of neurons, 1 - p;, is set
tobeinhibitory. Synapses arerectified to their assigned sign after each
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training epoch. Trials are 20 time units long. The single-neuron activa-
tion function is given by Softplus:

Softplus (x; ) = B log (1 + exp (Bx)), (10)

where we set the smoothness parameter to =1.

The student RNNs with unknown single-neuron parameters are
trained for 7,000 epochs and learning rate 0.001. The student RNN
with unconstrained connectivity shares the same single-neuron param-
eters as the teacher RNN, to facilitate the comparison. Figure 2 shows
results for 14 different trained students. The learning rate was set to
0.005. The synaptic weights are initialized randomly following a Gauss-
ian distribution, and the weight signs are correctly assigned (that is,
the student knows whether a neuron is excitatory or inhibitory). To
compare the weights after training, we picked a random unrecorded
neuron from the teacher and matched it with the unrecorded neuron
with the most similar activity profile. Then, the selected neurons in
teacher and student are discarded, and we picked a new neuron to be
matched in the teacher. This procedure is repeated until all neurons
are paired.

Figure 3. The teacher networks in the top row are rank-two networks
whose synaptic weight matrices are given by:

_lo om0, @,
Ji= N(m" ny +mon; ) an

The activation function for each neuron is the tanh function, and we
consider gains as the only single-neuron parameter. Networks have
variable numbers of neurons N, but the distribution of connectivity
loadingsis given by fixed parameters, such that all the networks gener-
ate the same dynamics for large N. The connectivity loadings of the i-th
neuron, {m®,m®,n{V, n'’}, are sampled from a four-variable Gaussian
distribution with mean 0. The variance parameters are o, ,» = 6,
Oppn = 26,r,, Opomon = 1.5 for r,r =12and 0,0m» = —1.5, 0,0,0 =1.5.
These parameters lead to a limit cycle in the dynamics®**.

The gains are chosen to be Gaussian, with mean1and s.d. 0.9,
uncorrelated with allthe other connectivity loadings. The precise shape
ofthegaindistribution does not affect the dynamics, only its meanand
variance, as long as the gains are uncorrelated with the connectivity
loadings. We selected trajectories that start on the limit cycle and
evolve during 20 time units. The student network is initialized in this
case with homogeneous unitary gainsandis trained for 7,000 epochs
with learning rate 0.005.

The teacher networks in the bottom row have random synaptic
weights asinref. 37, where theJ;are randomly drawn from a Gaussian
distribution with mean 0 and s.d.1.7/+/N. The single-neuron gains are
drawn froma Gaussian distribution of unit meanands.d. 0.5. One trial
with fixed and known initial conditionsis considered.

The student networks were initialized before training with homo-
geneous gains, g;=1.

Figure 4. The teacher network is the same biologically inspired net-
workasinFig. 2.

Figure 5. Drosophilalarva (top row). The teacher network was trained,
following Zarin et al.’, such that the motor neurons produce activa-
tion sequences consistent with forward and backward crawling, with
anadditional L2-regularization loss on the activity of premotor units.
The synaptic weights were fixed based on existing synapses, using
neurotransmitter identity when available, and normalizing based
on the percent input received by the postsynaptic target, as in Zarin
etal.>. Thereisadifferent tonicinput for each motion type. The trained
parameters are the biases, gains and the tonic input patterns for the
two motion directions. The single-neuron time constant in premotor

and motor neuronsis 0.2, and the activation functionis Softplus. Gains
were bounded during training to be between 0.5and 5.

The student network focused on the 178 premotor neurons, dur-
ingboth forward and backward motion. Gains and biases were trained
starting from arandom permutation of the teacher’s parameters. We
added asmall L2-regularization penalty to the loss function to reduce
instabilities in the solutions.

Drosophilaadult (central complex). The orientation selectivity of
EPG neuronsisassigned based on Turner-Evans et al.*°, where each EPG
cell type is maximally selectively 22.5° from their neighboring EPGs,
tiling the whole range of angular directions. The teacher was trained
suchthatthe EPG neurons are able to produce abump of activity for 2.5
time units, 2time units after abrief pulse (0.3 time units) is presented.
Theactivities of PEN1s, PEN2s, PEGs and A7s were not constrained. The
nonlinearity was Softplus, with a parameter of f=5. The signs of the
synaptic weights, based on the hemibrain connectome, were given by
the predicted neurotransmitter, and the strength of each connection
was set proportional to the number of synapses. The overall scaling of
the synaptic weight matrix was set such that the largest eigenvalue has
areal part of 0.8, and then gains and biases were trained.

To build the student network, the gains and biases of each cell
type were shuffled within their own cell group. The gains were further
scaleddownbyafactor 0.8. The gains were forced to be non-negative.
We used 60 different trials, with randomly set orientations.

Larval zebrafish (hindbrain). The teacher network is alinear net-
work based on Vishwanathanetal.”. The network was not trained; the
overall strength of recurrent connections was fixed such that the real
part of the largest eigenvalue is less but close to zero. The input pat-
tern was randomly set but made sure to overlap with the subspace of
the slowest activity mode. We then randomly assigned a set of gains
fromalog-normal distribution withmeanlands.d. 0.3 toeach neuron.
To keep the same dynamics, we rescaled each column of the synaptic
weight matrix by the inverse of the corresponding gain.

Figure 6. For the connectivity of the teacher in Fig. 6b-h, we drew each
synapticstrength/;from a Gaussian distribution with mean O ands.d.
1.4/+/N and, based on the singular value decomposition, kept the first
60 rank-one components. The network size was N=300.

InFig. 6f (inset), to calculate the principal angle between the first
M singular vectors of the subsampled matrix A,,;,. and the full matrix
A, we calculated the M left singular vectors of the matrix A,,., v,,, and
the first Mleft singular vectors of the matrix 4, v,. The principal angle
measures the maximum angle between two linear subspaces. We com-
puted the principal angle as the maximum singular value of the matrix
product v, "v,,, form,n=1...M.

Figure 7. We designed a teacher RNN with a rank-two synaptic weight
matrix and two populations®®, tanh activation function and gains
as single-neuron parameters; the biases are set to 0, N=1,000
neurons. The parameters in the first population are o), =1.89,0%,
=0.25,0(), =010, and g4, = 0.1 and in the second population
o0, = -011,0), = 022,60, = -0.02,and o2}, =2.26. The gains are
reduced to atwo-dimensional parameter space, where all the gains of
neurons in population 1 have the same value, g;, and all the gains of
neuronsin population2have value, g,.Inthe teacher network, g; =1.2
and g; = 1.5. The parameters are chosensuch that the first population
has more control of the dynamics along the variable x;, and the second

population controls k,.

Figure 8. The linear network corresponds to the same network as in
Fig. 6. The nonlinear network is the same network asin Fig. 2.

Statistics and reproducibility
For each teacher network, we trained at least 10 student networks to
obtainrobust estimates of the predictionaccuracy. All trained student
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networks wereincluded in the analysis. Student networks whose activ-
ity diverged during training were retrained with a different random
seed until convergence. No other datawere excluded fromthe analyses.

Predictionin linear recurrent networks
Inthe linear model, the RNNs are linear networks with dynamics

dx,- N
TE:_Xi+ZJU(Xj+bj)' (12)
Jj=1

We define the activity in this linear network as r,(¢t) = x,(¢). We assume
that the real part of all eigenvalues of the connectivity matrix/ are
smaller than unity, so that the linear dynamics are stable. The
single-neuron parameters b, correspond to the bias. Throughout the
results section, we focused on the fixed point activity, which is given
invector form by

r=3U-/)Jb, 13)

where / is the identity matrix. There is a linear mapping between
single-neuron parameters b and activity r, given by a matrix 4, in this
casedefinedas 4 = (/ — /). The notationA'indicates the pseudo-inverse.

In linear networks, such as the simplified model studied here, it
is possible to formulate the teacher-student setup as a system iden-
tification problem and estimate the parameters using alternative
approaches to gradient-based training, such as subspace methods®*.
For consistency with our approach to nonlinear networks, we use
gradient descent to optimize the parameters of the student. However,
the same conclusions can be reached from a system identification
perspective (Supplementary Note).

Fully sampled teacher. The loss function when all neurons are
recorded is given by the quadratic form
£=(b-b")ATA(b-b"), (14)
such that there is one global minimum when the student and teacher
are identical to each other, b = b*, and the Hessian of the loss is inde-
pendent of the teacher’s biases b*. Running gradient descent, in the
limit of small learning rates r, leads to equation (4) for the estimated

biasesin the student over the timecourse ¢ of learning, which readsin
vector form:

b __ VL =-nATA(b-b").

dr 9

Equation (15) shows that the evolution of single-neuron parameters b
is given by alinear dynamical system. The eigenvalue decomposition
of A”A, or, equivalently, the singular vector decomposition of 4, there-
fore determines how fast and along which modes the parameters b
decay toward the teacher values, b*. Given the singular vector decom-
position A = Z',z':l siw v, we denote theleft singular vector u,anactivity
mode and the right singular vector v, a parameter mode. The error in
parameter mode v, decreases over training with timescale n~'s; 2 reduc-
ingtheerrorinactivity mode u,. Aninitial guess b,, whichisadistance
of1away fromthe teacher b*along mode v,, generates anerror in neural
activity along mode u, of magnitude s;. Thus, parameter modes that
have large effects on activity are learned quickly, whereas parameter
modes that have small effects on activity are learned more slowly. We
refer to parameter modes corresponding to large and small singular
values as ‘stiff’ and ‘sloppy’ modes, respectively.

If the connectivity / is not full rank, some singular values of the
mapping matrix A willbe zero. Inthat case, the parameter values along
the modes v, corresponding to singular value s, = 0 (the extreme case
of sloppy parameter modes) cannot be inferred through gradient
descent, although that mismatch does not cause any errorin the activ-
ity of unrecorded neurons.

All the results can be directly extended to linear networks where
transient trajectories are considered, given an initial state X,. For
time-dependent responses, the dynamics follow

X(t) = A(H)b + exp (= +)) t) Xo, (16)

where there is an affine mapping from x(¢) to the parameters b, given
by A(t):

A = (- exp(~1+) ) U ))'). a7

The second term in equation (16) is the same for the teacher and the
student because we assume that the initial state is known. Thus, the
difference inactivity between networksis:

X(O) — x*(6) = A(t) (b — b*). (18)

Theloss functionis the time-averaged squared error of the activity:

L= lr f de(x(®) - x*(©) (O - x*(©) = (b—b") [AT©A®)] (b-b"),
19)

where the square brackets indicate a time average. The matrix that
determines the stiffand sloppy modesis, therefore, the time-averaged
matrix [A(t)TA(t)]. The eigenvalues of this matrix determine the level of
stiffness, and the eigenvectors determine the parameter modes.

Note that, in this model, we have assumed that all the recurrent
dimensions are explored by the teacher, such that the rank of the con-
nectivity determines the dimensionality of the activity. In practice,
neural activity is recorded for a limited time window in response to a
smallset ofinputs, so the dimensionality of the activity ismuchlower.
Therank of the connectivity setsan upper bound onthe network’s activ-
ity (see Extended Data Fig. 4 for a comparison of the dimensionality
of activity and rank of the connectivity in connectome-constrained
recurrent networks).

Subsampled activity. Recording fromasubset of Mneurons is equiva-
lent to selecting the rows of matrix A corresponding to the recorded
neurons and removing the rest. We refer to this matrix as matrix[A],.,, .
Equations (14) and (15) still hold, when substituting [A], ., . for A.

The effect of subsampling limits the number of learnable or stiff
parameter modes of the loss function used for training, which cannot
exceed M. Thefact that theinitial parameter guessb,canbe corrected
only along M modes makes the error in unrecorded activity non-zero
when therank of A islarger than M—thatis, when not enough neurons
are sampled. Furthermore, the parameter modes and activity modes
without a non-zero eigenvalue of the training loss need not align with
the stiffest modes of the fully sampled loss function.

One recorded neuron. Inlinear networks, we can calculate the average
error when we record only from neuron i. We use the vector a; to refer
to the row of the subsampled matrix A, .. After training has converged
for astudent with initial parameters b,, which is equivalent to assum-
ing zero training error for the recorded activity of neuron i given the
absence of measurement noise, the vector of biases after training is

bf—b = I—aT (bo—b) (20)

fiatl

The squared error in single-neuron parameters (combining both
recorded and unrecorded neurons), e, is calculated based on the norm
of the vector b,— b, given by equation (20), which reads:

2 2 * Taiair * T
& =€~ (bo=b") - (by~b")". @1

i<t
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Assuming that the initial guesses b, are unbiased with respect to the
teacher parameters b*, on average over initial conditions, the improve-
mentintheerrorinparametersis

(22)

Therefore, onaverage, theerrorin parameter spaceis equally reduced
for any selected neuron.
Similarly, the error inthe activity of neurons reads:

Xf—X* = A(b;—b*) (23)

such that the squared error, using the singular value decomposition
of A, is

N 2

£ = 353(vF (o0 -’ @4)

The squared error E} can be larger or smaller than the error before

training, unlike the error in parameter space, which canonly decrease.

Nevertheless, on average over initial conditions, the expected error
always decreases and is given by

E} 1 N
1-(=2 )= szcoszek),
()" 5 (2

where cos 6, is the angle between a; and v,. Equation (25) is used to
calculate the theoretical predictions in Fig. 8e.

(25

Error in unrecorded neural activity versus single-neuron param-
eters. From the perspective of a single neuron i, we can write the fol-
lowing identity using the equation for the linear network dynamics at
the fixed point:
a1 ~5) = S (] -x) + SH(e]-0). @

The first term corresponds to the error due to incorrect prediction
of the activity of other neurons in the network, whereas the second
term corresponds to the error due to parameter mismatch between
teacher and student.

Ifneuroniisarecorded neuron, then, after training has converged,
equation (26) equals 0, imposing the constraint

S x) =S 4 (6]-5)

In other words, the weighted sum of errors from incorrectly inferring
parameters (r.h.s.) compensates for the weighted sum of errors from
theincorrect prediction of activity (l.h.s.).

Ifneuroniisnotarecorded neuron, thenboth termsinequation (26)
in general contribute to the squared error. Which term has a stronger
contribution depends on the strength of recurrent connectivity. For
strong recurrence, the first term will dominate, whereas, for weakly
connected networks, the second term will dominate. As more neurons
arerecorded, the amplitudes of both contributions decay similarly.

27

Optimal selection of neurons: linear RNN. To calculate the best and
worst strategy for sampling neurons (Fig. 8), we used agreedy strategy,
where we first selected the neuron with the highest and lowest expected
reductioninactivity error, based onequation (25). Then, we proceeded
iteratively, projecting out the component af’) from the (/)-th selected
neuron from the matrix A?, calculating the matrix A(+D:

AQ. (28)

We thenselected again the row-vector af.’“)that maximizes (minimizes)
the decrease error in equation (25), for the best (worst) greedy selection
of neurons.

Optimal selection of neurons: nonlinear RNN. For any teacher RNN
with unknown gains or nonlinear activation functions, the mapping
between unknown single-neuron parameters and activity is not given
byalinear transformation viaamatrix A. Moreover, the linearization of
the gradient dynamics (equation (15)) close to the teacher parameter
depends on the specific parameters, unlike the linear case. Neverthe-
less, we canstill compute the best and worst selection of neurons based
onaninitial guess of the target parameters.

We focus on networks with firing rates given by r = §¢ (x + b),
where the notation x indicates a diagonal matrix whose non-zero ele-
ments are given by vector x, and we assume the function ¢ is
invertible. We are interested in the linearization Ar/Ab and Ar/Ag. We
are focused on fixed point activity, and, thus, using equation (6), we
candefine the function:

F(r,b,g)=—-¢1(gr)+b+Jr=0. (29)

By applying the implicit function theorem to F, we can calculate the
linearized mapping from parameters to activity:

dF\"' (dF .. dF
Ar = _(E> (EAb + @Ag) (30)
ar=((¢7)g™ —J)_l ((drl)' ;—OAg+ Ab) ‘ G1)

This linear relationship is analogous to the parameter-to-activity
mapping A defined previously for linear RNNs, allowing us to
use the same procedure iteratively. This amounts to assuming
that the curvature of the loss function close to the current param-
eter estimate is similar to the curvature close to the teacher
parameters.

In Fig. 7g,h, the Jacobian of the mapping between time-varying
activity and single-neuron parameters around the teacher’s
parameter values was estimated numerically, using PyTorch’s
automatic differentiation.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The connectomics data used in this study were published in Zarin
et al.' for Drosophila larva, in Scheffer et al.’ for the central com-
plex of adult Drosophila and in Vishwanathan et al.* for the brain-
stem of the larval zebrafish. All generated data shown in the main
results, together with the teacher and student recurrent networks,
are publicly available at https://doi.org/10.5281/zenodo.16618353
(ref. 65).

Code availability

All simulations and analyses were performed using custom
code written in Python (https://www.python.org). The code
used to generate all the results and can be found in ref. 65
and https://github.com/emebeiran/connconstr.
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4a-c.BExample traces of one recorded neuron and one unrecorded neuronin
the teacher and after training the student with mismatch in the S parameter.
The students networks were trained with 20 recorded neurons (left) and with
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while there is a mismatch in the activation function. Same network as in Fig. 4.
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A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

XX X X[ s

XOO X X OO O OKX

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

(] [

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

LI X X

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection ~ No commercial software was used. We used Python3 and PyTorch 1.13 for the numerical experiments. Code is shared in a community
repository: https://doi.org/10.5281/zenodo.16618353

Data analysis No commercial software was used. We used Python3 and PyTorch 1.13 for the numerical experiments. Code is shared in a community
repository: https://doi.org/10.5281/zenodo.16618353

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

£zoz |udy

Connectomics data was used from larval Drosophila (Zarin et al. 2019), from adult Drosophila -the hemibrain dataset (Scheffer et al. 2020), and from the hindbrain




of larval zebrafish (Vishwanathan et al. 2024). The preprocessed datasets and the simulated data shown in the results are available in a public repository: https://
doi.org/10.5281/zenodo0.16618353

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender Not applicable

Reporting on race, ethnicity, or Not applicable
other socially relevant
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groupings

Population characteristics Not applicable
Recruitment Not applicable
Ethics oversight Not applicable

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

|X| Life sciences |:| Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size We systematically studied multiple student networks (at least 10) linked to the same teacher network to ensure that all results are consistent
across random initializations.

Data exclusions  No data were excluded from the analysis, except for the few student networks whose activity became unstable over training.
Replication Code and data are available to replicate the findings of the study

Randomization  No random allocation of samples was relevant to this study on recurrent neural networks. We performed statistical controls involving random
shuffling neuronal identities to estimate how much better than chance are neural predictions.

Blinding Blinding group allocation is not relevant for this study on recurrent neural networks.

Behavioural & social sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description Briefly describe the study type including whether data are quantitative, qualitative, or mixed-methods (e.g. qualitative cross-sectional,
quantitative experimental, mixed-methods case study).

Research sample State the research sample (e.g. Harvard university undergraduates, villagers in rural India) and provide relevant demographic
information (e.g. age, sex) and indicate whether the sample is representative. Provide a rationale for the study sample chosen. For
studies involving existing datasets, please describe the dataset and source.

Sampling strategy Describe the sampling procedure (e.g. random, snowball, stratified, convenience). Describe the statistical methods that were used to
predetermine sample size OR if no sample-size calculation was performed, describe how sample sizes were chosen and provide a
rationale for why these sample sizes are sufficient. For qualitative data, please indicate whether data saturation was considered, and
what criteria were used to decide that no further sampling was needed.

Data collection Provide details about the data collection procedure, including the instruments or devices used to record the data (e.g. pen and paper,
computer, eye tracker, video or audio equipment) whether anyone was present besides the participant(s) and the researcher, and
whether the researcher was blind to experimental condition and/or the study hypothesis during data collection.

Timing Indicate the start and stop dates of data collection. If there is a gap between collection periods, state the dates for each sample
cohort.




Data exclusions If no data were excluded from the analyses, state so OR if data were excluded, provide the exact number of exclusions and the
rationale behind them, indicating whether exclusion criteria were pre-established.

Non-participation State how many participants dropped out/declined participation and the reason(s) given OR provide response rate OR state that no
participants dropped out/declined participation.

Randomization If participants were not allocated into experimental groups, state so OR describe how participants were allocated to groups, and if
allocation was not random, describe how covariates were controlled.

Ecological, evolutionary & environmental sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description Briefly describe the study. For quantitative data include treatment factors and interactions, design structure (e.g. factorial, nested,
hierarchical), nature and number of experimental units and replicates.
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Research sample Describe the research sample (e.g. a group of tagged Passer domesticus, all Stenocereus thurberi within Organ Pipe Cactus National
Monument), and provide a rationale for the sample choice. When relevant, describe the organism taxa, source, sex, age range and
any manipulations. State what population the sample is meant to represent when applicable. For studies involving existing datasets,
describe the data and its source.

Sampling strategy Note the sampling procedure. Describe the statistical methods that were used to predetermine sample size OR if no sample-size
calculation was performed, describe how sample sizes were chosen and provide a rationale for why these sample sizes are sufficient.

Data collection Describe the data collection procedure, including who recorded the data and how.
Timing and spatial scale |/ndicate the start and stop dates of data collection, noting the frequency and periodicity of sampling and providing a rationale for
these choices. If there is a gap between collection periods, state the dates for each sample cohort. Specify the spatial scale from which

the data are taken

Data exclusions If no data were excluded from the analyses, state so OR if data were excluded, describe the exclusions and the rationale behind them,
indicating whether exclusion criteria were pre-established.

Reproducibility Describe the measures taken to verify the reproducibility of experimental findings. For each experiment, note whether any attempts to
repeat the experiment failed OR state that all attempts to repeat the experiment were successful.

Randomization Describe how samples/organisms/participants were allocated into groups. If allocation was not random, describe how covariates were
controlled. If this is not relevant to your study, explain why.

Blinding Describe the extent of blinding used during data acquisition and analysis. If blinding was not possible, describe why OR explain why
blinding was not relevant to your study.

Did the study involve field work? []ves [ Ino

Field work, collection and transport

Field conditions Describe the study conditions for field work, providing relevant parameters (e.g. temperature, rainfall).

Location State the location of the sampling or experiment, providing relevant parameters (e.g. latitude and longitude, elevation, water depth).

Access & import/export Describe the efforts you have made to access habitats and to collect and import/export your samples in a responsible manner and in
compliance with local, national and international laws, noting any permits that were obtained (give the name of the issuing authority,
the date of issue, and any identifying information).

Disturbance Describe any disturbance caused by the study and how it was minimized.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.




Materials & experimental systems Methods

Involved in the study n/a | Involved in the study
Antibodies |Z| D ChlIP-seq
Eukaryotic cell lines |Z| D Flow cytometry
Palaeontology and archaeology |Z| D MRI-based neuroimaging

Animals and other organisms
Clinical data
Dual use research of concern

Plants

MNXXXNXNXX s
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Antibodies

Antibodies used Describe all antibodies used in the study, as applicable, provide supplier name, catalog number, clone name, and lot number.
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Validation Describe the validation of each primary antibody for the species and application, noting any validation statements on the
manufacturer’s website, relevant citations, antibody profiles in online databases, or data provided in the manuscript.

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) State the source of each cell line used and the sex of all primary cell lines and cells derived from human participants or
vertebrate models.

Authentication Describe the authentication procedures for each cell line used OR declare that none of the cell lines used were authenticated.

Mycoplasma contamination Confirm that all cell lines tested negative for mycoplasma contamination OR describe the results of the testing for
mycoplasma contamination OR declare that the cell lines were not tested for mycoplasma contamination.

Commonly misidentified lines Name any commonly misidentified cell lines used in the study and provide a rationale for their use.
(See ICLAC register)

Palaeontology and Archaeology

Specimen provenance Provide provenance information for specimens and describe permits that were obtained for the work (including the name of the
issuing authority, the date of issue, and any identifying information). Permits should encompass collection and, where applicable,

export.

Specimen deposition Indicate where the specimens have been deposited to permit free access by other researchers.

Dating methods If new dates are provided, describe how they were obtained (e.g. collection, storage, sample pretreatment and measurement), where
they were obtained (i.e. lab name), the calibration program and the protocol for quality assurance OR state that no new dates are
provided.

|:| Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
Research

Laboratory animals For laboratory animals, report species, strain and age OR state that the study did not involve laboratory animals.

Wild animals Provide details on animals observed in or captured in the field, report species and age where possible. Describe how animals were
caught and transported and what happened to captive animals after the study (if killed, explain why and describe method, if released,
say where and when) OR state that the study did not involve wild animals.

Reporting on sex Indicate if findings apply to only one sex; describe whether sex was considered in study design, methods used for assigning sex.
Provide data disaggregated for sex where this information has been collected in the source data as appropriate; provide overall




numbers in this Reporting Summary. Please state if this information has not been collected. Report sex-based analyses where
performed, justify reasons for lack of sex-based analysis.

Field-collected samples | For laboratory work with field-collected samples, describe all relevant parameters such as housing, maintenance, temperature,
photoperiod and end-of-experiment protocol OR state that the study did not involve samples collected from the field.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data

Policy information about clinical studies

All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration  Provide the trial registration number from ClinicalTrials.gov or an equivalent agency.

Study protocol Note where the full trial protocol can be accessed OR if not available, explain why.
Data collection Describe the settings and locales of data collection, noting the time periods of recruitment and data collection.
Qutcomes Describe how you pre-defined primary and secondary outcome measures and how you assessed these measures.

Dual use research of concern

Policy information about dual use research of concern

Hazards

Could the accidental, deliberate or reckless misuse of agents or technologies generated in the work, or the application of information presented
in the manuscript, pose a threat to:

Yes
[] Public health

[ ] National security
[ ] crops and/or livestock
|:| Ecosystems

XXXKX X &

[ ] Any other significant area

Experiments of concern

Does the work involve any of these experiments of concern:
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Demonstrate how to render a vaccine ineffective

Confer resistance to therapeutically useful antibiotics or antiviral agents
Enhance the virulence of a pathogen or render a nonpathogen virulent
Increase transmissibility of a pathogen

Alter the host range of a pathogen

Enable evasion of diagnostic/detection modalities

Enable the weaponization of a biological agent or toxin
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Any other potentially harmful combination of experiments and agents
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Plants

Seed stocks

Novel plant genotypes

Authentication

ChlIP-seq

Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches,
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor

was applied. o ) )
Describe-any-authentication-procedures for-each seed stock used-or novel-genotype generated.-Describe-any-experiments-used-to

assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism,
off-target gene editing) were examined.

Data deposition

|:| Confirm that both raw and final processed data have been deposited in a public database such as GEO.

|:| Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links

For "Initial submission" or "Revised version" documents, provide reviewer access links. For your "Final submission" document,

May remain private before publication. | provide a link to the deposited data.

Files in database submission Provide a list of all files available in the database submission.

Genome browser session
(e.g. UCSC)

Methodology

Replicates

Sequencing depth
Antibodies
Peak calling parameters

Data quality

Software

Flow Cytometry

Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to
enable peer review. Write "no longer applicable" for "Final submission" documents.

Describe the experimental replicates, specifying number, type and replicate agreement.

Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of reads and
whether they were paired- or single-end.

Describe the antibodies used for the ChlP-seq experiments; as applicable, provide supplier name, catalog number, clone name, and
lot number.

Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and index files
used.

Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold enrichment.

Describe the software used to collect and analyze the ChiP-seq data. For custom code that has been deposited into a community
repository, provide accession details.

Plots
Confirm that:

|:| The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

|:| The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

|:| All plots are contour plots with outliers or pseudocolor plots.

|:| A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation
Instrument

Software

Describe the sample preparation, detailing the biological source of the cells and any tissue processing steps used.
Identify the instrument used for data collection, specifying make and model number.

Describe the software used to collect and analyze the flow cytometry data. For custom code that has been deposited into a
community repository, provide accession details.
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Cell population abundance Describe the abundance of the relevant cell populations within post-sort fractions, providing details on the purity of the
samples and how it was determined.

Gating strategy Describe the gating strategy used for all relevant experiments, specifying the preliminary FSC/SSC gates of the starting cell
population, indicating where boundaries between "positive" and "negative" staining cell populations are defined.

|:| Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging

Experimental design

Design type Indicate task or resting state, event-related or block design.

Design specifications Specify the number of blocks, trials or experimental units per session and/or subject, and specify the length of each trial
or block (if trials are blocked) and interval between trials.

Behavioral performance measures State number and/or type of variables recorded (e.g. correct button press, response time) and what statistics were used
to establish that the subjects were performing the task as expected (e.g. mean, range, and/or standard deviation across

subjects).
Acquisition

Imaging type(s) Specify: functional, structural, diffusion, perfusion.

Field strength Specify in Tesla

Sequence & imaging parameters Specify the pulse sequence type (gradient echo, spin echo, etc.), imaging type (EPI, spiral, etc.), field of view, matrix size,
slice thickness, orientation and TE/TR/flip angle.

Area of acquisition State whether a whole brain scan was used OR define the area of acquisition, describing how the region was determined.

Diffusion MRI D Used D Not used

Preprocessing

Preprocessing software Provide detail on software version and revision number and on specific parameters (model/functions, brain extraction,
segmentation, smoothing kernel size, etc.).

Normalization If data were normalized/standardized, describe the approach(es): specify linear or non-linear and define image types used for
transformation OR indicate that data were not normalized and explain rationale for lack of normalization.

Normalization template Describe the template used for normalization/transformation, specifying subject space or group standardized space (e.g.
original Talairach, MNI305, ICBM152) OR indicate that the data were not normalized.

Noise and artifact removal Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and
physiological signals (heart rate, respiration).

Volume censoring Define your software and/or method and criteria for volume censoring, and state the extent of such censoring.

Statistical modeling & inference

Model type and settings Specify type (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first and
second levels (e.g. fixed, random or mixed effects; drift or auto-correlation).

Effect(s) tested Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether
ANOVA or factorial designs were used.

Specify type of analysis: [ | whole brain [ | ROI-based || Both

Statistic type for inference Specify voxel-wise or cluster-wise and report all relevant parameters for cluster-wise methods.

(See Eklund et al. 2016)

Correction Describe the type of correction and how it is obtained for multiple comparisons (e.g. FWE, FDR, permutation or Monte Carlo).
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Models & analysis

n/a | Involved in the study
|:| |:| Functional and/or effective connectivity

|:| |:| Graph analysis

|:| |:| Multivariate modeling or predictive analysis

Functional and/or effective connectivity Report the measures of dependence used and the model details (e.g. Pearson correlation, partial correlation,
mutual information).

Graph analysis Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph,
subject- or group-level, and the global and/or node summaries used (e.g. clustering coefficient, efficiency,
etc.).

Multivariate modeling and predictive analysis  Specify independent variables, features extraction and dimension reduction, model, training and evaluation
metrics.
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