
Nature Neuroscience

nature neuroscience

https://doi.org/10.1038/s41593-025-02080-4Article

Prediction of neural activity in 
connectome-constrained recurrent 
networks
 

Manuel Beiran    1,2   & Ashok Litwin-Kumar    1,2,3 

Recent technological advances have enabled measurement of the 
synaptic wiring diagram, or ‘connectome’, of large neural circuits or 
entire brains. However, the extent to which such data constrain models 
of neural dynamics and function is debated. In this study, we developed a 
theory of connectome-constrained neural networks in which a ‘student’ 
network is trained to reproduce the activity of a ground truth ‘teacher’, 
representing a neural system for which a connectome is available. Unlike 
standard paradigms with unconstrained connectivity, the two networks 
have the same synaptic weights but different biophysical parameters, 
reflecting uncertainty in neuronal and synaptic properties. We found that 
a connectome often does not substantially constrain the dynamics of 
recurrent networks, illustrating the difficulty of inferring function from 
connectivity alone. However, recordings from a small subset of neurons 
can remove this degeneracy, producing dynamics in the student that 
agree with the teacher. Our theory demonstrates that the solution spaces 
of connectome-constrained and unconstrained models are qualitatively 
different and determines when activity in such networks can be well 
predicted. It can also prioritize which neurons to record to most effectively 
inform such predictions.

Establishing links between the connectivity of large neural networks 
and their emergent dynamics is a major goal of theoretical neurosci-
ence. Many studies have attempted to develop methods to infer syn-
aptic connectivity from functional correlations derived from recorded 
neural activity. However, this ‘inverse problem’ has proven to be chal-
lenging and often ill-posed1–5, due to the degeneracy of the space of 
network connectivities that produce similar dynamics. Such inference 
is particularly difficult when neural dynamics are low dimensional or 
otherwise structured1.

The recent availability of comprehensive synaptic connectome 
datasets has led to approaches that focus instead on the ‘forward prob-
lem’ of predicting neural dynamics from synaptic connectivity. The 

scale of such datasets has increased rapidly, from the 302 neurons of the 
nematode Caenorhabditis elegans identified decades ago6 to recently 
acquired volumes containing entire nervous systems of Drosophila lar-
vae7 and adults8–10 and larval zebrafish11. Several studies have compared 
connectomes with functional connectivity based on activity correla-
tions between neurons in the resting state or in response to optogenetic 
perturbations12. This has highlighted notable differences for certain 
systems13. A complementary line of research has used connectome 
information to initialize or build explicit priors on the distribution 
of the parameters of neural network models14,15. In some cases, these 
models are then optimized to perform computations, and it has been 
found empirically that such biological constraints sometimes yield 
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using parameters gi and bi for neuron i’s gain and bias, its activity is  
given by

ri(t) = giϕ (xi(t) + bi) , (1)

where ϕ is a nonlinear function. The network dynamics follow:

τdxi
dt

= −xi +
N
∑
j=1

Jijr j + Ii(t), (2)

where Jij is the synaptic weight from neuron j to neuron i, and 
Ii(t) is the time-varying external input received by neuron i. For 
connectome-constrained networks, we begin by assuming that both 
the presence or absence of a connection between neurons as well 
as the strengths of these connections are known, and, thus, Jij is the 
same for both teacher and student. Additionally, we assume that the 
external inputs and initial state x(t = 0) are the same for teacher and 
student (Discussion).

Note that the number of unconstrained parameters in the stu-
dent network scales differently depending on whether single-neuron 
parameters or connectivity parameters are fixed. There are N2 free 
synaptic weight parameters if the connectivity is unspecified, as in 
previous studies of teacher–student paradigms31,32. On the other hand, 
for connectome-constrained networks, the number of unconstrained 
parameters is proportional to N. For example, when we parameterize 
the activation functions of neurons with gains and biases, as in equation 
(1), there are 2N unknowns.

Student network constrained by task output
We first asked whether teacher and student networks that share the 
same synaptic weight matrix exhibit consistent solutions when the 
student is trained to reproduce a task performed by the teacher (Fig. 1). 
Because we are interested in whether connectivity constraints yield 
mechanistic models of the teacher, we measure the consistency of solu-
tions using the similarity of the activity of neurons in the teacher and 
those same neurons in the student. Such a direct comparison is possible 
because the connectome uniquely identifies each individual neuron. 
We also measure the similarity of teacher and student single-neuron 
parameters. We refer to the dissimilarity between teacher and student 
activities or parameters as the ‘error’ associated with each respective 
quantity. We note that our notion of similarity between teacher and 
student is more precise than requiring similarity of collective dynam-
ics as measured through dimensionality reduction methods, such as 
principal component analysis. Indeed, matching such dynamics can be 
accomplished by recording a small number of neurons without access 
to a connectome33,34.

We built a teacher network that performs a flexible sensorimotor 
task. Specifically, the network implements a variant of the cycling 
task35, which requires the production of oscillatory responses of differ-
ent durations in response to transient sensory cues (Fig. 1a and Meth-
ods). In the network, firing rates are a non-negative smooth function 
of the input currents, and the unknown single-neuron parameters are 
the gains and biases (Fig. 1b, left). The synaptic weight matrix is sparse, 
and neurons are either excitatory or inhibitory (Fig. 1b, right).

We trained multiple students to generate the same readout as 
the teacher. Each student is initialized with different gains and biases 
before being trained via gradient descent. Trained networks success-
fully reproduce the teacher’s readout (Fig. 1c,f). However, the error in 
the neural activity of the student, compared to the teacher, increases 
over training epochs (Fig. 1d). As a baseline, we computed the error of a 
student whose neurons match the activities of all neurons in the teacher 
but with shuffled identities (gray line in Fig. 1d). In this baseline, the 
manifold of neural activity is the same in teacher and student but not 
the activity of single neurons. In all networks, the error in activity after 
training remains above this baseline, indicating that training does not 

models with improved abilities to predict neural data16–19. However, 
the ill-posedness of the inverse problem and lack of one-to-one cor-
respondence between structure and function call into question the 
reliability of such predictions.

A major challenge for connectome-constrained models is 
uncertainty in biophysical parameters that affect neural dynam-
ics. Connectomes generated from electron microscopy imaging 
provide information on structural connections, neurotransmitter 
identities of chemical synapses10,20 and connection strengths esti-
mated by synapse count21 or volume22. However, other biological 
processes are undetermined, such as the neuromodulatory envi-
ronment, existence of electrical synapses and functional properties 
of individual neurons and synapses23. Changes in such parameters 
were previously shown to produce dramatic alterations in network  
activity24–27.

In the present study, we develop a theory of the solution spaces 
of networks with specified synaptic weights but unmeasured and 
heterogeneous single-neuron biophysical parameters28,29. We use a 
‘teacher–student’ paradigm in which the activity of a ‘student’ network 
is trained to reproduce the activity of a ‘teacher’ network. The teacher 
is a synthetic model that represents ground truth, analogous to bio-
logical circuits for which a connectome is available and from which we 
can record activity. Unlike previous theories in which the student and 
teacher neurons have the same input–output function and synaptic 
weights are trained1,30, here the two networks have the same weights, 
but their biophysical properties differ a priori.

We found that training a connectome-constrained student net-
work to generate the task-related readout of the teacher does not 
always produce consistent dynamics in the teacher and student. 
Multiple combinations of single-neuron parameters, each produc-
ing different activity patterns, can equivalently solve the same task. 
However, when connectivity constraints are combined with record-
ings of the activity of a subset of neurons, this degeneracy is broken. 
The minimum number of recordings depends on the dimensionality 
of the network dynamics, not the total number of neurons. This con-
trasts with student networks whose connectivity is unconstrained, 
which always display degenerate solutions. Interestingly, even when 
neural activity is well reconstructed, single-neuron parameters are 
often not recovered accurately, suggesting that some combinations 
of parameters are ‘stiff’, with strong effects on neural dynamics, 
whereas others are ‘sloppy’, with weak effects. Our qualitative pre-
dictions hold across a variety of simulated networks and networks 
constrained by true connectomes from invertebrates and vertebrates. 
Our theory can also rank neurons that should be recorded with higher 
priority to maximally reduce uncertainty in network activity, suggest-
ing approaches that iteratively refine network models using neural  
recordings.

Results
Teacher–student recurrent networks
To explore how a connectome constrains the solutions of neural net-
work models, we studied a teacher–student paradigm31,32: a recurrent 
neural network (RNN) that we call the teacher is constructed, and the 
parameters of a student RNN are adjusted to mimic this teacher. The 
teacher is used as a proxy for a neural system whose connectome has 
been mapped and whose output or neural activity can be recorded. 
To develop our theory, we will begin by examining synthetic teacher 
networks whose activity and function we specify. Later, we will consider 
teacher networks derived from empirical connectome data.

Both teacher and student are composed of N firing rate 
neurons, in which the activity of neuron i is described by a con-
tinuous variable ri(t) (see Methods for details). The activity is 
a nonlinear function, which we call the activation function, of the 
input current xi(t) received by the neuron and depends on a set of 
single-neuron parameters. For instance, if we describe this function 
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produce a correspondence between the function of individual teacher 
and student neurons. Examining the activities of individual neurons 
shows that neuronal dynamics across different student networks are 
highly variable, and all students differ from the teacher (Fig. 1g).

Finally, we examined the error in single-neuron parameters 
between teacher and student (Fig. 1e). The error in gains varies little 
over training and is similar to a randomly shuffled baseline. The error in 
biases grows slightly but remains within the same order of magnitude 
as the baseline.

We conclude that knowledge of synaptic weights and task output 
is not always enough to predict the activity of single neurons in recur-
rent networks. For the task we considered, there is a degenerate space 
of solutions, with different combinations of single-neuron gains and 
biases, that solve the same task. There may be scenarios for which this 
degeneracy is reduced, such as small networks optimized for highly 
specific functions or networks trained on complex or high-dimensional 

task spaces (Discussion). Nonetheless, our results show that, even with 
N2 connectivity constraints, task-optimized neural dynamics are, in 
general, highly heterogeneous.

Student network constrained by activity recordings
We next asked whether these conclusions change if, instead of record-
ing only task-related readout activity, we record the activity of a sub-
set of neurons in the teacher network. We use M ≤ N to denote the 
number of recorded neurons. Students are trained to reproduce this 
recorded activity, which provides additional constraints on the solution 
space (Fig. 2a,b). The recording of subsampled activity in the teacher 
is analogous to neural recordings in imaging or electrophysiology 
studies, where only a subset of neurons is registered. We trained two 
types of student networks: students that have access to the teacher 
connectome and students that are not constrained in connectivity. 
For connectome-constrained students (Fig. 2c,e), single-neuron 
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Fig. 1 | Task-trained networks with the same connectivity. a, A teacher RNN 
is trained to generate two different readout sequences in response to input 
pulses that produce two different patterns of activation (gray and black). b, 
Properties of the teacher RNN. The teacher RNN has heterogeneous single-
neuron parameters (gains and biases of activation functions, left) and sparse 
connectivity with connection probability p = 0.5 (right), and neurons connect 
through either excitatory (E, red) or inhibitory (I, blue) synapses. c, Student 
networks with the same synaptic weights as the teacher are trained to produce 
the teacher’s output. Error in the readout (training loss, mean squared error) as a 

function of training epoch. Each colored line corresponds to a different student 
network. d, Error (mismatch in neural activity) between teacher and student 
RNNs. Gray line, for reference, corresponds to the average error in activity when 
the student reproduces the teacher’s activity but with shuffled neuron identities. 
e, Error in gains and biases versus training epoch. f, Readout of teacher and 
student networks after training, for the two trial types (top and bottom). Teacher 
and student networks both solve the task. g, Neural activity of an example 
excitatory (left) and inhibitory (right) neuron. Teacher and student neurons 
exhibit different single-neuron dynamics. Exc., excitatory; Inh., inhibitory.
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parameters of both recorded and unrecorded neurons are unknown 
and, therefore, trained. For students with unconstrained connectivity, 
synaptic weights are trained instead. In this case, the single-neuron 
parameters of the student are set equal to those of the teacher so that 
the networks differ only in synaptic weights (Fig. 2d,f). Additionally, 
because there is no direct map between unrecorded neurons in the 
teacher and the student when the connectome is not known, after 
training we searched for the mapping between student and teacher 
neurons that minimizes the mismatch in unrecorded activity at each 
training epoch (Methods).

We found that both connectome-constrained and unconstrained 
students are able to mimic the activity of the M recorded teacher neu-
rons with small errors (Fig. 2b; the teacher has N = 300 neurons). We 
then asked whether this holds for the unrecorded neurons. When the 
connectivity is provided (Fig. 2c), the error for unrecorded neurons is 
reduced to values similar to the error for recorded neurons when more 
than M* = 30 neurons are recorded (example task outputs are shown 
in Extended Data Fig. 1). In comparison, when training the synaptic 
weights (Fig. 2d), unrecorded neuron activities are not recovered sub-
stantially better than baseline even when most neurons are recorded. 

Thus, connectome-constrained, but not unconstrained, networks 
produce consistent solutions when M is large enough.

We then assessed whether the students’ parameters converge to 
those of the teacher. For connectome-unconstrained students, the 
error in synaptic weights remains high, for connections between both 
recorded and unrecorded neurons (Fig. 2f). We may expect this to occur 
given that the activity of unknown neurons in these networks is not 
well predicted (Fig. 2d). More surprisingly, errors in the single-neuron 
parameters of connectome-constrained networks also remain high, 
even when the activity of unrecorded neurons is well predicted (Fig. 2e). 
We did not find qualitative differences in the behavior of single-neuron 
parameters for recorded and unrecorded neurons.

Thus far, we focused on a teacher whose neural activity is pri-
marily generated through recurrent interactions, triggered by brief 
external pulses. We further explored whether similar results hold in 
networks driven by a time-varying external input (Extended Data Fig. 1). 
Additionally, we systematically varied the distributions of gains and 
connection sparsity (Extended Data Fig. 1). In all these networks, the 
qualitative dependence of the error on M was unchanged. Nevertheless, 
the error in unrecorded neural activity prior to training is different in 
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Fig. 2 | Predicting activity of unrecorded neurons when the activity of a 
subset of the network is observed. a, The student RNN is trained to mimic the 
activity of M recorded neurons in a teacher RNN. b, Error in recorded activity 
(loss) versus training epoch for students with trained single-neuron parameters 
(left) and students with trained synaptic weights (right). Lines correspond to 
different numbers of recorded neurons M and show mean over 10 random seeds. 
Error bands in all panels indicate ±s.e.m. All students successfully reproduce the 
recorded activity of the teacher after training. c, Left, error in activity of the  
N − M unrecorded neurons versus training epoch. Right, error in unrecorded 
neuronal activity after training, as a function of number of recorded neurons  
M. Smaller dots correspond to each of the 10 trained students. Error is 

substantially reduced when recording from M > 30 neurons. The error 
corresponding to zero recorded neurons (black dots) is the error of the student 
network prior to training, with random single-neuron parameters. Gray line 
denotes shuffled baseline as in Fig. 1d. d, Analogous to c but training synaptic 
weights instead. The error in the activity of unrecorded neurons remains high 
across values of M. The M dependence is a consequence of the procedure of 
matching neurons across teacher and student (Methods). e, Error in gains and 
biases versus training epochs. Left, parameters of recorded neurons. Right, 
parameters of unrecorded neurons. f, Analogous to e for synaptic weights of 
recorded neurons (left) and unrecorded neurons (right). act., activity; Rec., 
recorded; conn., connectivity.
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networks with strong inputs or weak recurrent connections. Unlike 
in Fig. 2, where the error prior to training is similar to a baseline with 
randomly shuffled neuron identities, the error for strongly input-driven 
networks lies below this baseline even before training. Thus, although 
certain features of neural activity may be predictable even with random 
parameters when the input is known, improving upon this initial base-
line through training requires sufficiently many recorded neurons.

In summary, connectome-constrained networks are able to predict 
the activity of unrecorded neurons when further constrained by the 
activity of enough recorded neurons. By contrast, networks without a 
connectome constraint do not predict unrecorded activity. Neverthe-
less, in all cases, the unknown parameters are not precisely recovered, 
suggesting that multiple sets of biophysical parameters lead to the 
same neural activity.

Required number of recorded neurons is independent of 
network size
What features of a connectome-constrained RNN determine how many 
recorded neurons are required to predict unrecorded activity? We con-
sidered two alternatives: the required number is a fixed fraction of the 
total number of neurons in the network or the number is determined 
by properties of the network dynamics. The former alternative would 
pose a challenge for large connectome datasets.

To disambiguate these two possibilities, we examined a class of 
teacher networks whose population dynamics are largely independ-
ent of their size N. We generated networks with specific rank-two con-
nectivity that autonomously generate a stable limit cycle36 (Fig. 3a 
and Methods). In these networks, the currents received by each neu-
ron oscillate within a two-dimensional linear subspace, independent  
of N (Fig. 3b).

We found no difference in a plot of error in unrecorded activ-
ity against number of recorded neurons M, for networks of different 
sizes (Fig. 3c), suggesting that accurate predictions can be made when 
recording from few neurons, even in large networks. Examining more 
closely the dependence of the error on M, we observed that when M = 1, 
the student produces oscillatory activity with the same frequency as 
the teacher, but the activity of unrecorded neurons exhibits consistent 
errors at particular phases of the oscillation (Extended Data Fig. 2). By 
contrast, when M = 7, errors in recorded and unrecorded neurons are 
similarly small.

This led us to hypothesize that the number of recorded neurons 
required to accurately predict neural activity scales with the dimension-
ality of the neural dynamics, not the network size. This would explain 
why networks with widely varying sizes but similar two-dimensional 
dynamics exhibit similar performance (Fig. 3c). To further test this 
hypothesis, we studied a setting in which we trained students to mimic 
another class of teacher networks: strongly coupled random networks37 
(Fig. 3d). In such networks, activity is chaotic, and, unlike low-rank 
networks (Fig. 3b), the linear dimensionality of the dynamics grows 
in proportion to N (ref. 38), a dependence that we verified for the time 
windows we considered (Fig. 3e). In this case, the required number of 
recorded neurons also grows proportionally with N (Fig. 3f). Together, 
these results suggest that recording from a subset of neurons, on the 
order of the dimensionality of network activity, is sufficient to predict 
unrecorded neural activity. Later, we will show that this numerical result 
is consistent with the predictions of an analytical theory.

Robustness to model mismatch
Thus far, we have considered teacher and student networks that belong 
to the same model class of firing rate networks with parameterized 
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activation functions and connectivity. However, models based on 
experimental data will possess some degree of ‘model mismatch’ due 
to unaccounted or incorrectly parameterized biophysical processes. 
Moreover, errors in synaptic reconstruction and inter-individual vari-
ability in connectomes imply that synaptic weight estimates may also be 
imprecise39. In this section, we examine whether our qualitative results 
hold when teacher and student exhibit model mismatch.

We used the same teacher as in Figs. 1 and 2. To study the case of 
mismatch in activation function (Fig. 4a), we parameterized the activa-
tion function with β, which controls the smoothness of the rectification, 
and used different values of β for student and teacher (Fig. 4b). Larger 
mismatch increases the error in both recorded and unrecorded activity 
(Fig. 4c). The effect is strongest in an extreme case of very small student 
β, for which very little rectification occurs. This makes it difficult for the 
student to match even the recorded activity of the teacher (Fig. 4c and 
Extended Data Fig. 3). Nevertheless, up to a considerable mismatch, 
there is a steep decrease in the error in unrecorded activity as more 
neurons are recorded.

Can model mismatch arising from single-neuron properties 
be compensated by allowing the synaptic weights to be trained, 
which introduces additional free parameters? We examined a stu-
dent with activation function mismatch and a synaptic weight 
matrix that was initialized equal to that of the teacher but then 
trained (Extended Data Fig. 3). This performed worse than train-
ing single-neuron parameters, arguing against the feasibility of 
this approach. An alternative approach is to increase the number of 
single-neuron parameters. For instance, when β is trained together 
with gains and biases, the error in unrecorded activity is similar to 
the case without mismatch (Extended Data Fig. 3). We conclude that 
parameterizing uncertainty in activation function is important for 
dealing with this form of model mismatch.

We next considered mismatch between teacher and student con-
nectomes. To simulate such errors, we added Gaussian noise to the 
strengths of existing connections and added spurious connections with 
probability σ (Fig. 4d and Methods). The resulting corrupted synaptic 

weight matrix was used by the student. Noise in the synaptic weight 
matrix shifts its eigenvalues (Fig. 4e) and modifies the corresponding 
eigenvectors. Trained students exhibit smooth increases of the error 
in recorded and unrecorded activity as this noise is increased (Fig. 4f). 
However, we again found a steep decrease of the error in unrecorded 
neural activity with M, suggesting that this qualitative behavior is not 
overly sensitive to connectome reconstruction errors.

Teacher networks constrained by empirical connectomes
Thus far, we have examined synthetic teachers, whose connectivity 
statistics and functional properties may differ from those of biological 
networks. We next study teachers whose synaptic weights are directly 
determined by empirical connectome datasets. We modeled three 
neural circuits for which a ground truth connectome is available and 
whose function has been characterized: the premotor–motor system 
in the ventral nerve cord of larval Drosophila16, the heading direction 
system in the central complex of adult Drosophila9,40 and the oculomo-
tor neural integrator in the hindbrain of larval zebrafish41.

When larval Drosophilae are engaged in forward or backward 
locomotion, recurrently connected premotor neurons in the ven-
tral nerve cord drive motor neurons to produce appropriately timed 
muscle activity (Fig. 5a, left). Motor neurons in each body segment 
are segregated into functional groups whose sequences of activa-
tion differ across the two behaviors (Fig. 5a, right). A previous study 
showed that a connectome-constrained RNN recapitulates features 
of motor and premotor neuron activity when trained to produce such 
sequences in the A1 and A2 body segments16. We used such a model 
as a connectome-constrained teacher, whose 178 premotor neurons 
produce appropriately timed activity in 52 motor neurons (Methods). 
Student networks comprising the premotor circuitry were then trained 
to approximate recorded teacher activity. We found that the error in 
unrecorded activity is reduced when approximately 10 neurons are 
recorded (Fig. 5b). When few neurons are recorded, the error in activity 
is similar to a network with randomly chosen single-neuron parameters 
(two recorded neurons; Fig. 5c, left). Recording from more neurons 
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dramatically improves the prediction (Fig. 5c, right), which is qualita-
tively similar to the results of the synthetic teacher network (Fig. 2c).

Next, we studied the heading direction system in the central com-
plex of adult Drosophila. This system has been the subject of numer-
ous recent theoretical analyses, most of which examined models with 
idealized connectivity rather than directly incorporating connectome 
data40,42,43. We modeled a circuit reconstructed in the hemibrain data-
set9 comprising 153 neurons grouped into four cell types: the putatively 
excitatory EPG, PEN and PEG neurons and the putatively inhibitory Δ7 
neurons (Fig. 5d). The 46 EPG neurons encode heading orientation and 
are arranged along a ring in the ellipsoid body based on their angular 
tuning. Recurrent connections among EPG neurons and other cell types 
form a stable ‘bump’ of neural activity representing heading angle, 
consistent with ‘ring attractor’ dynamical models44. We, therefore, 
constructed a teacher network in which EPG neurons maintained a 
bump representing a heading encoded by a brief stimulus (Fig. 5d and 
Methods). Student networks without access to recordings generated 
neural activity different from the teacher (Fig. 5e, black dots). In par-
ticular, these students did not behave as ring attractors, demonstrating 
that the central complex connectivity alone does not guarantee stable 

attractor dynamics (Fig. 5f). However, recording from a handful of neu-
rons was enough to place the system in the correct dynamical regime 
and accurately predict the activity of unrecorded neurons (Fig. 5f).

Finally, we studied the oculomotor integrator in the hindbrain 
of larval zebrafish. This system persistently tracks eye position by 
integrating eye motor commands. The integration is supported by 
strong recurrent connections that produce a ‘line attractor’ in neu-
ral activity space. Such dynamics were previously modeled with a 
connectome-constrained linear RNN41 (Fig. 5g and Methods). We used 
this network as the teacher and then trained the gains of student net-
works with the same synaptic weights. Although a random initializa-
tion of gain parameters did not produce the slow timescale necessary 
for accurate integration, recording from a few neurons substantially 
reduced the error in activity (Fig. 5h). This is consistent with the results 
of Vishwanathan et al.41, who adjusted a global gain parameter to pro-
duce a slow timescale.

The weight matrices of empirical connectomes and synthetic 
teacher–student networks (Figs. 2 and 3) may exhibit statistical dif-
ferences due to the level of sparsity, heterogeneity in the number and 
strength of synaptic connections and other higher-order structure. 
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However, in each of these examples, the qualitative phenomena 
present in synthetic teacher–student networks are recapitulated. 
Recording from a number of neurons determined by the dimension-
ality of the teacher activity (Extended Data Fig. 4)— a handful for the 
one-dimensional line attractor or two-dimensional ring attractor 
dynamics and approximately 10 for more complex sequential activ-
ity—produces consistent dynamics between teacher and student.

Linear network model
We developed an analytic theory of our connectome-constrained 
teacher–student paradigm. The theory aims to explain, first, how 
the teacher and student produce the same activity despite different 
single-neuron parameters and, second, the conditions under which 
the student’s activity converges to that of the teacher.

We begin with a simplified linear model and later relax our assump-
tions: the teacher and student RNNs have linear single-neuron activa-
tion functions; the only unknown single-neuron parameters are the 
biases bi; and the synaptic weight matrix J has rank D (Fig. 6a). This 
rank constraint implies that recurrent neural activity is confined to a 
D-dimensional subspace of the N-dimensional neural activity space. 
We focus on the network’s steady-state activity at equilibrium, which 
depends linearly on the biases:

ri =
N
∑
j=1

Aijb j, (3)

where we have defined A ≡ (I − J)†J .
Although we focus here on equilibrium activity, time-dependent 

trajectories also yield a linear relation between activity and 
single-neuron parameters (see Methods for the time-dependent deri-
vation). For the same reason, we also assume no external input to each 
neuron (Ii(t) = 0). This linear relation between single-neuron param-
eters and activity, which underpins the mathematical tractability of the 
simplified model, is a consequence of the linear network dynamics and 
the additive influence of the bias parameters. Choosing multiplicative 
gains as the unknown single-neuron parameters, for instance, would 
produce a nonlinear relation.

The student is trained using gradient descent updates to the 
single-neuron parameters. In the limit of small learning rate η, the 
learning trajectory in parameter space can be expressed in continuous 
time t′ (with t′ proportional to training epoch) as:

dbi
dt′

= −η
M
∑
k=1

N
∑
j=1

AT
ikAkj (b j − b∗j) , (4)

where M is the number of recorded neurons. Using these learning 
dynamics, we can analytically calculate the expected error in recorded 
and unrecorded activity and in single-neuron parameters (Fig. 6c and 
Methods). This reveals a transition to zero error in the activity of unre-
corded neurons when M = D, the rank of the synaptic weight matrix 
(Fig. 6c, gray line). There are, however, large errors in single-neuron 
parameters (Fig. 6c, red line) even when the activity of the full network 
is accurately recovered.

To understand these results, we analyzed the properties of the 
loss function, which describes how the difference in activity between 
teacher and student depends on single-neuron parameters. We dif-
ferentiate the loss function for the full network, which is determined 
by errors in both recorded and unrecorded neural activity, from the 
loss function for the recorded neurons, which is the function opti-
mized during training. These loss functions are convex, as illustrated 
in Fig. 6d. The minima are surrounded by a valley-shaped region of low 
loss (Fig. 6d, right). We refer to directions for which the loss changes 
quickly or slowly as ‘stiff’ or ‘sloppy’ parameter modes, respectively45. 
Stiff modes both have the greatest effect on the loss and are learned 
most quickly. Each mode’s degree of stiffness is determined by the 

corresponding singular value of the matrix A (Methods). A mode is 
infinitely sloppy when its associated singular value is zero, implying 
that parameter differences between teacher and student along that 
mode produce no differences in neural dynamics.

The parameter modes that affect the recorded activities and, 
thus, the loss function for the M recorded neurons are determined by 
A1:M,: (the submatrix of A containing the rows corresponding to these 
neurons), whose stiff and sloppy modes are generally different from 
those of the fully sampled matrix A (Fig. 6e versus Fig. 6f). Recording 
from a subset of neurons introduces additional modes with zero sin-
gular value when M < D, because A1:M,: has, at most, M non-zero singular 
values. The stiff modes of the loss function of the recorded activity 
will also, typically, not be fully aligned with those of the fully sampled 
system (Fig. 6f, inset), leading to errors in prediction.

To illustrate these results, we plotted the error in single-neuron 
activity and biases for M below and above the critical number D 
(Fig. 6g,h). When recording from few neurons, the error in these param-
eters for unrecorded neurons remains high (Fig. 6g, left). The error 
in biases quickly converges to a small value along the stiffest mode, 
whereas it barely changes for sloppy modes (Fig. 6g, right). The stiffest 
mode of the subsampled network is not completely aligned with the 
stiffest mode of the fully sampled network, explaining why it converges 
to a small but non-zero value. Only when more neurons are recorded 
does the error in unrecorded activity, and along the stiffest parameter 
mode, converge to zero (Fig. 6h, left).

The simplified model demonstrates that specific patterns of 
single-neuron parameters determine the error between teacher and 
student. Stiff parameter modes are learned, whereas sloppy modes 
are not. The number of stiff parameter modes is bounded by the rank 
of J and, thus, the dimensionality of neural activity. Recording from 
increasingly many neurons provides increasingly many constraints 
on this activity. When enough neurons are sampled, the stiff modes for 
the M recorded neurons align with the stiff modes for the full network, 
leading to correct prediction of unrecorded activity. These conclusions 
do not rely on the choice of gradient descent as a learning algorithm, as 
an analysis using linear system identification methods yields the same 
conclusions (Supplementary Note). We also note that we have assumed 
here that the loss function is determined by the difference in recorded 
neural activity. However, similar conclusions would be reached if it were 
determined by other linear projections of activity, such as projections 
onto task-related dimensions (Discussion).

Loss landscape
We next generalized our theory to nonlinear networks. To facilitate 
analysis, we studied a class of low-rank RNNs whose activity can be 
understood analytically36,46,47. We focused on a teacher network with 
N = 1,000 neurons and a nonlinear, bounded activation function. Each 
neuron is parameterized only by the gain parameter. We designed the 
network’s synaptic weight matrix to be rank-two, with two different 
subpopulations. For this network, there are only two stiff parameter 
modes: the average single-neuron gain for each subpopulation (Fig. 7a). 
We set the weights of the teacher to generate two different pairs of 
non-trivial fixed points, and we recorded activity as the neural dynamics 
approached one of these fixed points (Fig. 7b).

Because the parameter space is two dimensional, we can visual-
ize the loss function for the full network across a grid of parameters 
(Fig. 7c). The function has a single minimum, similar to the linear model. 
However, due to the nonlinearity, the function is non-convex (contour 
lines are not convex in Fig. 7c), and the curvature for parameter val-
ues away from the global minimum is different than at the minimum. 
Despite this non-convexity, gradient descent on this fully sampled loss 
function will still approach the single minimum.

We next visualized the loss function for the activity of one recorded 
neuron (Fig. 7d). We repeated this for two different choices of the 
single recorded neuron, each of which exhibited distinct dynamics 
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(black lines in Fig. 7b). For these loss functions, there is an additional 
sloppy mode that is not present in the fully sampled loss (black valleys 
in Fig. 7d). These results are similar to those of the linear case, although 
due to the nonlinearity, the sloppy modes correspond to curved regions 
in parameter space.

The sloppy mode is different for each of the two recorded neurons. 
When running gradient descent on these subsampled loss functions, 
randomly initialized parameter values will evolve toward the dark 
regions of Fig. 7d—for example, toward the blue dot when neuron 1 is 
sampled or toward the red dot when neuron 2 is sampled. However, 
both of these two solutions produce high error in unrecorded activity 
(Fig. 7e,f). This mismatch in unrecorded activity occurs because record-
ing from a single neuron constrains activity along only one dimension 
of the two-dimensional activity space defined by the rank-two synaptic 
weight matrix (Fig. 6e).

To test whether the same insights also apply to nonlinear networks 
with high-dimensional parameter spaces, we computed the stiff and 
sloppy modes of the fully sampled loss function in the network of 
Figs. 1 and 2. We approximated the loss function in parameter space 

to second order at the optimum. We then projected the average error 
in parameter space, before and after training, along the estimated 
stiff and sloppy modes (Fig. 7g,h). When few neurons are recorded, 
the average changes in parameter space before and after training are 
not aligned with the stiff modes of the loss function. However, when 
recording from many neurons, there is a large decrease in error along 
the estimated stiff modes while the error along sloppy modes barely 
changes, as predicted by our theory. Thus, a second-order approxi-
mation of the non-convex loss function qualitatively describes the 
behavior of gradient descent. Some other effects of non-convexity, 
however, cannot be explained by the linear theory—for instance, the 
growth in errors in the bias parameters over the course of training 
(Figs. 1e and 2e).

We conclude that the qualitative behavior of the linear model holds 
for the nonlinear networks studied in previous sections. Specifically, 
when the loss function is determined by recordings of a small number 
of neurons, the parameter modes become sloppier on average, and 
new sloppy parameter modes are added that do not align with those 
of the fully sampled loss function.
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Optimal selection of single neurons
Thus far, recorded neurons have been selected randomly from the 
teacher network. As we have seen, different sets of recorded neurons 
define different loss functions and gradient descent dynamics, sug-
gesting the possibility of selecting recorded neurons to minimize the 
expected error in unrecorded activity (Fig. 8a). Specifically, we aim 
to select recorded neurons to maximize the alignment of stiff modes 
of the subsampled loss and those of the fully sampled loss function.

In the simplified linear model, subsampling neurons corresponds 
to selecting rows of the matrix A that relates single-neuron parameters 
to activity (Fig. 8b). In this case, it is possible to exactly determine which 
neurons are most informative to record. The most informative neuron i 

is the one whose corresponding row Ai,: overlaps most with the weighted 
left singular vectors of A (Methods). The second most informative neu-
ron is the one whose row overlaps most with the weighted left singular 
vectors of A projected onto the space orthogonal to the previously 
selected neuron’s row and so on. It is also possible to define the least 
informative sequence of recorded neurons by minimizing rather than 
maximizing these overlaps. We compared the error in unrecorded activ-
ity for the most and least informative sequence of selected neurons 
as well as random selection, finding that the optimal strategy indeed 
improves the efficiency of training (Fig. 8d).

For nonlinear networks, the mapping between parameters and net-
work activity is also nonlinear and depends on the unknown parameters 
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indicates the parameters of the teacher RNN. d, Loss function when recording the 
activity of neuron 1 (left) or neuron 2 (right). Blue and red squares correspond, 
respectively, to solutions where the training loss is close to zero. e, Target 

trajectory (black) and dynamics of the teacher RNN. Blue and red trajectories 
correspond to the solutions found in d. f, Predicted activity for neurons 1 and 
2 for the solutions found in d. Left, error in the activity of the recorded neuron 
(neuron 1) is small, whereas error for the unrecorded neuron (neuron 2) is large. 
Right, similar to left but when neuron 2 is recorded and neuron 1 is unrecorded. 
g, Trained nonlinear RNN from Fig. 1. h, Average squared error in parameters 
projected on the different stiff and sloppy parameter modes. The stiff and 
sloppy dimensions are determined by approximating the full-sampled loss 
function around the teacher’s values (Methods). Average over 10 realizations. E, 
excitatory; I, inhibitory; params., parameters; Proj., projected; idx., index.

http://www.nature.com/natureneuroscience


Nature Neuroscience

Article https://doi.org/10.1038/s41593-025-02080-4

of the teacher (Methods). As a result, the globally optimal sequence 
cannot be determined a priori. Nevertheless, the mapping between 
parameters and activity can be linearized based on an initial guess of 
the single-neuron parameters and then iteratively refined. In practice, 
we found that linearization works well for nonlinear networks, with the 
optimal selection strategy dramatically reducing the error compared 
to random selection, especially when there are few recorded neurons. 
For the network studied in Fig. 2, the error using the best 10 predicted 
neurons is 60% smaller than random selection (Fig. 8g).

The singular vectors used to determine which neurons are most 
informative depend on the global connectivity structure and cannot 
be exactly reduced to any single-neuron property. Such properties, 
including in-degree, out-degree, average synaptic strength or neuron 
firing rate, may be correlated with the singular value decomposition 
score developed here but are not guaranteed to be good proxies for 
informativeness. This argues for the use of models like those studied 
here to guide the selection of recorded neurons.

Discussion
Building connectivity-constrained neural network models has become 
increasingly viable as the scale of connectome datasets has grown. 
Our theory cautions against overinterpreting such models when they 
are insufficiently constrained (Fig. 1) but also shows that correctly 

parameterized models paired with sufficiently many neural recordings 
can provide consistent predictions (Figs. 2 and 5). This consistency is a 
consequence of the qualitatively different solution spaces associated 
with connectome-constrained and unconstrained models (Figs. 2c,d 
and 7). The theory also suggests that models can be used to inform 
targets for physiological recordings (Fig. 8).

Challenges for connectome-constrained neural networks
We have studied the properties of connectome-constrained neural net-
works using simulations of neural activity based on synthetic network 
models and three different connectomics datasets9,10,41. Our results 
suggest that the ‘forward problem’ of predicting neural activity using 
a connectome is not as ill-posed as the corresponding ‘inverse prob-
lem’ studied previously1. However, although we demonstrated that 
this result is robust to model mismatch and inaccuracy in synaptic 
reconstruction (Fig. 4), it is likely that, for some neural systems, the 
degree of model mismatch is too severe. Such systems likely include 
those largely driven by unmodeled processes such as the effects of 
neuropeptides or gap junction couplings13,23. Moreover, systems for 
which the firing rate models described here are a poor match, such as 
systems that operate based on spike synchrony rather than rate codes48, 
highly compartmentalized interactions49 or dynamics of specific ion 
channels50, may be out of reach of the present approach. Nonetheless, 
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changes in neural activity. c, Teacher RNN with linear single-neuron activation 
functions, unknown biases and synaptic weight matrix with rank D = 60 (as in Fig. 
6). d, Error in activity of unrecorded neurons as a function of number of recorded 
neurons M. Lines correspond to theoretical prediction, dots to numerical 
simulation (mean ± s.e.m.). We selected neurons following the estimated best 

ranking (red), five different random rankings (black) and the worst ranking 
(blue). e, Error in recorded neurons for the same networks. f−h, Analogous to c−e 
but for a nonlinear network; data show mean ± s.e.m. The teacher is the RNN from 
Fig. 2. Single-neuron parameters are both gains and biases. The linearization 
in the mapping from parameters to activity assumes homogeneous single-
neuron parameters (Methods). Note the linear scale for the error in g, which 
highlights the errors when few neurons are recorded. act., activity; E, excitatory; 
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our results establish that the dynamics in RNNs with order N, rather 
than N2, unknown parameters can be accurately predicted.

We also assumed in all our analyses that time-varying external 
inputs, together with the initial state, are known. Consistent with 
this, recent work using connectome information to infer function has 
focused on regions close to the sensory periphery19,51, where input 
statistics are better characterized. We do not expect connectomes to 
provide substantial constraints on strongly input-driven neural activity 
when inputs are not controlled.

Relatedly, for our studies of empirical connectomes (Fig. 5), we 
modeled systems for which detailed descriptions of the function of 
individual cell types exist16,41,42. This was necessary to generate realistic 
teacher activity, as recordings of neural activity aligned to whole-brain 
connectomes are not yet available for the systems that we studied. We 
did not apply our theory to C. elegans recordings as it has been argued 
that chemical synapses are not predictive of functional interactions13.

We note that the parameters in our models may reflect 
state-dependent modulation. Neuromodulators, for instance, are 
known to modify effective neuronal excitabilities27. In our networks, 
gains and biases do not necessarily account for a single biophysical 
process but, rather, the coordinated effects of multiple processes. As 
long as the timescale of these processes is slower than the dynamics 
being predicted, we expect an approach similar to the one described 
here to be appropriate. However, this state dependence may also imply 
that the inferred parameters do not generalize to new behavioral states.

Assessment of connectome-constrained solutions
It is known that recordings from M ≥ D different neurons are required to 
estimate neural dynamics lying in a manifold of linear dimensionality 
D, independent of network size33. Connectome-constrained models 
go beyond such population-level descriptions of neural dynamics, as 
they are also concerned with how each specific neuron contributes 
to global activity patterns. This requires knowledge of unrecorded 
neurons’ loadings onto the low-dimensional manifold. This benchmark 
is appropriate when such models are used to predict the function of 
specific neurons or neuron types or to guide experiments that manipu-
late specific neurons14,16,19.

The match between student and teacher activities in our models 
depends on multiple properties. These include whether random choices  
of single-neuron parameters produce similar dynamics in the two net-
works (Fig. 3c and Extended Data Fig. 1), the extent of model mismatch 
(Fig. 4) and the degree to which training the student using activity 
recordings may compensate for the mismatch (Extended Data Fig. 3). 
These properties depend on specific features of the teacher network. 
Recent studies have demonstrated above-chance prediction of func-
tion using uniform or random parameters in models of the Drosophila 
nervous system14,19. In one case, accurate predictions of motor neuron 
responses to optogenetic stimulation was achieved without any adjust-
ment of single-neuron parameters, which may reflect the presence of 
strong and direct excitatory pathways between stimulated neurons 
and output neurons14. In another case, further training of single-neuron 
parameters based on a task objective of detecting visual motion led to 
an improvement in predictions19. On the other hand, failure of a related 
approach in C. elegans was argued to be a consequence of model mis-
match from unmodeled peptidergic interactions13.

We found that training student networks to match the teacher only 
led to improvements when, in addition to connectivity constraints, 
sufficiently many neuron activities were constrained. This result was 
independent of the initial performance of the system with random 
parameters (Extended Data Fig. 1). We focused on the improvement 
that can be achieved through knowledge provided by neural record-
ings, which was motivated by the observation that training the student 
only on the task-related readout of a teacher did not predict unrecorded 
neural activity (Fig. 1). However, it is possible that high-dimensional 
task readouts may improve predictions. Indeed, for our linear model, 

constraining activity along one task-related dimension is analogous 
to recording one additional neuron, as both correspond to a linear 
projection of the network’s vector of neural activities. In networks that 
perform multiple tasks or process diverse inputs, recording activity 
under multiple task or input conditions may improve the prediction 
of unrecorded activity, as has been argued for the Drosophila visual 
system19. This would likely require an assumption that single-neuron 
parameters are not strongly modulated across these conditions.

Properties of connectome-constrained and unconstrained 
network solutions
The loss functions of task-trained feedforward neural networks have 
been shown to exhibit multiple minima, with often counterintuitive 
geometrical properties52,53. The multiplicity of minima arises from 
symmetries such as weight permutations in the network parameteri-
zation54. It remains unclear whether such ideas extend to recurrent 
neural networks. Our results for connectome-constrained networks 
are consistent with the existence of a single minumum or connected set 
of minima with stiff and sloppy parameter modes around the optimal 
solution (Fig. 7). The alignment between sloppy parameter modes in 
subsampled versus fully sampled loss functions explains the success 
in generalizing to unrecorded neurons.

Robustness to a large range of structural parameters and pertur-
bations is a hallmark of biological systems, with a few stiff parameter 
combinations determining function45,55–59. We have shown that this is 
also true of connectome-constrained networks. One consequence of 
this observation is that, in underconstrained, data-driven models for 
neuroscience and machine learning, the distribution of parameters, 
such as synaptic weights or single-neuron excitabilities found after 
successful training, may not be predictive of task performance. Our 
work argues in favor of identifying stiff parameter combinations in such 
networks and using these to assess the similarity of network solutions60.
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Methods
Recurrent network models
We focused on recurrent neural networks where the activity of each 
neuron i is described by a continuous variable, a firing rate ri(t), for 
i = 1…N. The firing rate of each neuron is calculated by applying 
a parametric function to the input xi(t) that the neuron receives at 
each timepoint,

ri(t) = F (xi;θi) , (5)

where θi denote the single-neuron parameters that modulate the func-
tion F. We denote this input-to-rate function F as the activation func-
tion. The activation function may depend on various single-neuron 
parameters θi, such as the gains gi and biases bi in equation (1).

The dynamics of the recurrent neural network follow

τ dxi
dt

= −xi +
N
∑
j=1

Jijr j + Ii(t) + ηi(t). (6)

The matrix J is the synaptic weight matrix, with each element Jij indi-
cating the signed synaptic strength of the connection from neuron j 
to neuron i. The constant τ indicates the timescale of single neurons. 
We assume the same τ for all neurons and set it equal to 1, unless speci-
fied otherwise, such that all other timescales are given in units of τ. 
We denote the external input by Ii(t), which includes the task-related 
input. Additional private white noise may be provided to each neuron, 
denoted by ηi(t).

The dynamical landscape that a network can implement is 
thus determined by the order-N single-neuron parameters and 
the N2 synaptic weights. In the section ‘Teacher RNNs and training 
parameters’ below, we specify the choice of activation function, 
single-neuron parameters and synaptic weight matrices used in  
each figure.

Teacher–student: setup and training
We focus on a set of two RNNs. The first is the teacher RNN, which 
represents the network whose connectome is known and from which 
we can record neural activity. The other is the student RNN, which is 
trained (that is, its parameters are optimized) to match the recorded 
neural activity in the teacher. The dynamics of both networks are 
determined by equation (6). Asterisks are used to refer to teacher 
network parameters.

Unless otherwise specified, the teacher and the student network 
share the same synaptic weight matrix J. Additionally, the external input 
Ii(t) and initial conditions xi (t = 0) are the same for teacher and student. 
The noise intensity is chosen to be zero in the teacher, because we focus 
on the case of no measurement noise. The noise intensity in the students 
is weak, to provide additional stability over training. The possible struc-
tural differences between teacher and student come from the set of 
single-neuron parameters {θi}. These single-neuron parameters are 
optimized so that student activity matches the recorded activity of the 
teacher. In Fig. 2d and Extended Data Fig. 1, where we train students with 
unconstrained connectivity, we instead set the single-neuron param-
eters to be equal but the synaptic weight matrices to be different in 
teacher and student. In these cases, the student synaptic weights 
are trained.

The trained parameters are optimized to minimize the 
loss function

ℒ = 1
M

M
∑
m=1

[(rm(t) − r∗m(t))
2] , (7)

where the square brackets denote an average over the timepoints in 
the recorded window, and we sorted neurons such that the first M 
neurons are those that are recorded. In Fig. 1, instead of defining the 

loss based on the recorded activity traces rm(t), we used the task 
readout, z = ∑iw

out
i ri(t).

We trained the parameters of the student using standard gra-
dient descent methods applied to time-varying signals: we imple-
mented backpropagation through time via the Adam optimizer 
using PyTorch61–63. Learning rates varied between 0.0001 and 0.01, 
and decay rates of the first and second moments varied between 0.9  
and 0.999.

Quantifying performance
We used two different metrics to assess the deviations between teacher 
and student. The first is the root mean squared error. For Figs. 3 and 
5, networks where the firing rates are very heterogeneous across neu-
rons, or where the temporal profile of the responses is more relevant 
(which would be the case when comparing to, for instance, calcium 
fluorescence traces), we instead used a correlation-based score, which 
is not affected by the average amplitude of the responses. This score 
is defined as

Error = 1 − ⟨ρi⟩ , (8)

where the angular brackets indicate the mean over neurons i, and ρi is 
the Pearson correlation coefficient for the i-th neuron:

ρi =
[(ri(t) − ̄ri) (r∗i (t) − ̄r∗i )]

√[(ri(t) − ̄ri)
2] [(r∗i (t) − ̄r∗i )

2
]
. (9)

The square brackets indicate the average across timepoints, and ̄ri is 
the time-averaged activity of the i-th neuron. When there are multiple 
trials (Fig. 5a–f), we calculated one score ρi per neuron and trial and 
then averaged over trials. For Fig. 3c, we took the absolute value of ρi 
before averaging over neurons, because we were interested in whether 
single neurons of the teacher reproduce the oscillatory dynamics of 
the teacher, independently of the sign, although our qualitative conclu-
sions do not depend on this choice.

In Fig. 2, to match unrecorded neurons, we paired unrecorded 
neurons in the teacher with unrecorded neurons in the student at 
each training epoch, by solving the linear sum assignment problem 
using the function ‘linear_sum_assignment’ in Scipy. We calculated 
the mean squared error between all unrecorded neurons i in the 
teacher and unrecorded neurons j in the student and stored them in 
the matrix element Cij. The linear sum assignment problem finds the 
matrix X such that minimizes ∑i,jCi,jXi,j, with the constraint that each 
row in X maps exactly one single neuron in the teacher to one neuron in  
the student.

Teacher RNNs and training parameters
In this section, we detail the choice of single-neuron parameters, the 
features of the teacher RNN and the training parameters used in each 
figure. Unless otherwise specified, we used Δt = 0.1 in units of the 
single-neuron time constant. We injected noise at each timestep of 
the dynamics with s.d. 0.002. See also the shared code (to be made 
available upon publication) for reproducing all the numerical experi-
ments in the study.

Figures 1 and 2. The teacher RNN (N = 300) is trained with learning 
rate 0.001 during 1,400 epochs to solve the cycling task. The initial 
connectivity is chosen as follows. First, each synapse is drawn from a 
random Gaussian distribution with mean zero and variance 2.4/√N . 
The sparse weights (fraction p = 0.5) are randomly chosen, set to zero 
and not trained. A fraction pE = 0.7 of neurons selected randomly is set 
to be excitatory, such that their synaptic strengths are set to their 
absolute value, whereas the remaining fraction of neurons, 1 − pE, is set 
to be inhibitory. Synapses are rectified to their assigned sign after each 
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training epoch. Trials are 20 time units long. The single-neuron activa-
tion function is given by Softplus:

Softplus (x;β) = β−1 log (1 + exp (βx)) , (10)

where we set the smoothness parameter to β = 1.
The student RNNs with unknown single-neuron parameters are 

trained for 7,000 epochs and learning rate 0.001. The student RNN 
with unconstrained connectivity shares the same single-neuron param-
eters as the teacher RNN, to facilitate the comparison. Figure 2 shows 
results for 14 different trained students. The learning rate was set to 
0.005. The synaptic weights are initialized randomly following a Gauss-
ian distribution, and the weight signs are correctly assigned (that is, 
the student knows whether a neuron is excitatory or inhibitory). To 
compare the weights after training, we picked a random unrecorded 
neuron from the teacher and matched it with the unrecorded neuron 
with the most similar activity profile. Then, the selected neurons in 
teacher and student are discarded, and we picked a new neuron to be 
matched in the teacher. This procedure is repeated until all neurons  
are paired.

Figure 3. The teacher networks in the top row are rank-two networks 
whose synaptic weight matrices are given by:

Jij =
1
N (m(1)

i n(1)j +m(2)
i n(2)j ) . (11)

The activation function for each neuron is the tanh function, and we 
consider gains as the only single-neuron parameter. Networks have 
variable numbers of neurons N, but the distribution of connectivity 
loadings is given by fixed parameters, such that all the networks gener-
ate the same dynamics for large N. The connectivity loadings of the i-th 
neuron, {m(1)

i ,m(2)
i ,n(1)i ,n(2)i }, are sampled from a four-variable Gaussian 

distribution with mean 0. The variance parameters are σm(r′)m(r) = δr′r, 
σn(r′)n(r) = 2δr′r, σn(r)m(r) = 1.5 for r, r′ = 1, 2 and σn(1)m(2) = −1.5, σn(2)m(1) = 1.5. 
These parameters lead to a limit cycle in the dynamics36,47.

The gains are chosen to be Gaussian, with mean 1 and s.d. 0.9, 
uncorrelated with all the other connectivity loadings. The precise shape 
of the gain distribution does not affect the dynamics, only its mean and 
variance, as long as the gains are uncorrelated with the connectivity 
loadings. We selected trajectories that start on the limit cycle and 
evolve during 20 time units. The student network is initialized in this 
case with homogeneous unitary gains and is trained for 7,000 epochs 
with learning rate 0.005.

The teacher networks in the bottom row have random synaptic 
weights as in ref. 37, where the Jij are randomly drawn from a Gaussian 
distribution with mean 0 and s.d. 1.7/√N. The single-neuron gains are 
drawn from a Gaussian distribution of unit mean and s.d. 0.5. One trial 
with fixed and known initial conditions is considered.

The student networks were initialized before training with homo-
geneous gains, gi = 1.

Figure 4. The teacher network is the same biologically inspired net-
work as in Fig. 2.

Figure 5. Drosophila larva (top row). The teacher network was trained, 
following Zarin et al.16, such that the motor neurons produce activa-
tion sequences consistent with forward and backward crawling, with 
an additional L2-regularization loss on the activity of premotor units. 
The synaptic weights were fixed based on existing synapses, using 
neurotransmitter identity when available, and normalizing based 
on the percent input received by the postsynaptic target, as in Zarin 
et al.16. There is a different tonic input for each motion type. The trained 
parameters are the biases, gains and the tonic input patterns for the 
two motion directions. The single-neuron time constant in premotor 

and motor neurons is 0.2, and the activation function is Softplus. Gains 
were bounded during training to be between 0.5 and 5.

The student network focused on the 178 premotor neurons, dur-
ing both forward and backward motion. Gains and biases were trained 
starting from a random permutation of the teacher’s parameters. We 
added a small L2-regularization penalty to the loss function to reduce 
instabilities in the solutions.

Drosophila adult (central complex). The orientation selectivity of 
EPG neurons is assigned based on Turner-Evans et al.40, where each EPG 
cell type is maximally selectively 22.5° from their neighboring EPGs, 
tiling the whole range of angular directions. The teacher was trained 
such that the EPG neurons are able to produce a bump of activity for 2.5 
time units, 2 time units after a brief pulse (0.3 time units) is presented. 
The activities of PEN1s, PEN2s, PEGs and Δ7s were not constrained. The 
nonlinearity was Softplus, with a parameter of β = 5. The signs of the 
synaptic weights, based on the hemibrain connectome, were given by 
the predicted neurotransmitter, and the strength of each connection 
was set proportional to the number of synapses. The overall scaling of 
the synaptic weight matrix was set such that the largest eigenvalue has 
a real part of 0.8, and then gains and biases were trained.

To build the student network, the gains and biases of each cell 
type were shuffled within their own cell group. The gains were further 
scaled down by a factor 0.8. The gains were forced to be non-negative. 
We used 60 different trials, with randomly set orientations.

Larval zebrafish (hindbrain). The teacher network is a linear net-
work based on Vishwanathan et al.41. The network was not trained; the 
overall strength of recurrent connections was fixed such that the real 
part of the largest eigenvalue is less but close to zero. The input pat-
tern was randomly set but made sure to overlap with the subspace of 
the slowest activity mode. We then randomly assigned a set of gains 
from a log-normal distribution with mean 1 and s.d. 0.3 to each neuron. 
To keep the same dynamics, we rescaled each column of the synaptic 
weight matrix by the inverse of the corresponding gain.

Figure 6. For the connectivity of the teacher in Fig. 6b–h, we drew each 
synaptic strength Jij from a Gaussian distribution with mean 0 and s.d. 
1.4/√N  and, based on the singular value decomposition, kept the first 
60 rank-one components. The network size was N = 300.

In Fig. 6f (inset), to calculate the principal angle between the first 
M singular vectors of the subsampled matrix A1:M,: and the full matrix 
A, we calculated the M left singular vectors of the matrix A1:M,:, v′m, and 
the first M left singular vectors of the matrix A, vm. The principal angle 
measures the maximum angle between two linear subspaces. We com-
puted the principal angle as the maximum singular value of the matrix 
product v′m

T
v′n, for m, n = 1…M.

Figure 7. We designed a teacher RNN with a rank-two synaptic weight 
matrix and two populations36, tanh activation function and gains  
as single-neuron parameters; the biases are set to 0, N = 1,000  
neurons. The parameters in the first population are σ(1)n1m1

= 1.89,σ(1)n1m2

= 0.25,σ(1)n2m1
= 0.10,  and σ(2)n2m2

= 0.11  and in the second population 
σ(1)n1m1

= −0.11,σ(1)n1m2
= 0.22,σ(1)n2m1

= −0.02, and σ(2)n2m2
= 2.26. The gains are 

reduced to a two-dimensional parameter space, where all the gains of 
neurons in population 1 have the same value, g1, and all the gains of 
neurons in population 2 have value, g2. In the teacher network, g∗1 = 1.2 
and g∗1 = 1.5. The parameters are chosen such that the first population 
has more control of the dynamics along the variable κ1, and the second 
population controls κ2.

Figure 8. The linear network corresponds to the same network as in 
Fig. 6. The nonlinear network is the same network as in Fig. 2.

Statistics and reproducibility
For each teacher network, we trained at least 10 student networks to 
obtain robust estimates of the prediction accuracy. All trained student 
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networks were included in the analysis. Student networks whose activ-
ity diverged during training were retrained with a different random 
seed until convergence. No other data were excluded from the analyses.

Prediction in linear recurrent networks
In the linear model, the RNNs are linear networks with dynamics

τ dxi
dt

= −xi +
N
∑
j=1

Jij (x j + b j) . (12)

We define the activity in this linear network as ri(t) = xi(t). We assume 
that the real part of all eigenvalues of the connectivity matrix J are 
smaller than unity, so that the linear dynamics are stable. The 
single-neuron parameters bi correspond to the bias. Throughout the 
results section, we focused on the fixed point activity, which is given 
in vector form by

r = (I − J )†J b, (13)

where I is the identity matrix. There is a linear mapping between 
single-neuron parameters b and activity r, given by a matrix A, in this 
case defined as A = (I − J)†J. The notation A† indicates the pseudo-inverse.

In linear networks, such as the simplified model studied here, it 
is possible to formulate the teacher–student setup as a system iden-
tification problem and estimate the parameters using alternative 
approaches to gradient-based training, such as subspace methods64. 
For consistency with our approach to nonlinear networks, we use 
gradient descent to optimize the parameters of the student. However, 
the same conclusions can be reached from a system identification 
perspective (Supplementary Note).

Fully sampled teacher. The loss function when all neurons are 
recorded is given by the quadratic form

ℒ = (b − b∗)
T
ATA (b − b∗) , (14)

such that there is one global minimum when the student and teacher 
are identical to each other, b = b*, and the Hessian of the loss is inde-
pendent of the teacher’s biases b*. Running gradient descent, in the 
limit of small learning rates η, leads to equation (4) for the estimated 
biases in the student over the timecourse t′ of learning, which reads in 
vector form:

db
dt′

= −η∇ℒ = −ηATA (b − b∗) . (15)

Equation (15) shows that the evolution of single-neuron parameters b 
is given by a linear dynamical system. The eigenvalue decomposition 
of ATA, or, equivalently, the singular vector decomposition of A, there-
fore determines how fast and along which modes the parameters b 
decay toward the teacher values, b*. Given the singular vector decom-
position A = ∑N

k=1 skukv
T
k, we denote the left singular vector uk an activity 

mode and the right singular vector vk a parameter mode. The error in 
parameter mode vk decreases over training with timescale η−1s−2k , reduc-
ing the error in activity mode uk. An initial guess b0, which is a distance 
of 1 away from the teacher b* along mode vk, generates an error in neural 
activity along mode uk of magnitude sk. Thus, parameter modes that 
have large effects on activity are learned quickly, whereas parameter 
modes that have small effects on activity are learned more slowly. We 
refer to parameter modes corresponding to large and small singular 
values as ‘stiff’ and ‘sloppy’ modes, respectively.

If the connectivity J is not full rank, some singular values of the 
mapping matrix A will be zero. In that case, the parameter values along 
the modes vk corresponding to singular value sk = 0 (the extreme case 
of sloppy parameter modes) cannot be inferred through gradient 
descent, although that mismatch does not cause any error in the activ-
ity of unrecorded neurons.

All the results can be directly extended to linear networks where 
transient trajectories are considered, given an initial state x0. For 
time-dependent responses, the dynamics follow

x(t) = A(t)b + exp ((−I + J) t)x0, (16)

where there is an affine mapping from x(t) to the parameters b, given 
by A(t):

A(t) = (I − exp ((−I + J) t)) (I − J)†J. (17)

The second term in equation (16) is the same for the teacher and the 
student because we assume that the initial state is known. Thus, the 
difference in activity between networks is:

x(t) − x∗(t) = A(t) (b − b∗) . (18)

The loss function is the time-averaged squared error of the activity:

ℒ = 1
T ∫ dt(x(t) − x∗(t))T (x(t) − x∗(t)) = (b − b∗)

T
[AT(t)A(t)] (b − b∗) ,

(19)

where the square brackets indicate a time average. The matrix that 
determines the stiff and sloppy modes is, therefore, the time-averaged 
matrix [A(t)TA(t)]. The eigenvalues of this matrix determine the level of 
stiffness, and the eigenvectors determine the parameter modes.

Note that, in this model, we have assumed that all the recurrent 
dimensions are explored by the teacher, such that the rank of the con-
nectivity determines the dimensionality of the activity. In practice, 
neural activity is recorded for a limited time window in response to a 
small set of inputs, so the dimensionality of the activity is much lower. 
The rank of the connectivity sets an upper bound on the network’s activ-
ity (see Extended Data Fig. 4 for a comparison of the dimensionality 
of activity and rank of the connectivity in connectome-constrained 
recurrent networks).

Subsampled activity. Recording from a subset of M neurons is equiva-
lent to selecting the rows of matrix A corresponding to the recorded 
neurons and removing the rest. We refer to this matrix as matrix [A]1∶M,∶. 
Equations (14) and (15) still hold, when substituting [A]1∶M,∶ for A.

The effect of subsampling limits the number of learnable or stiff 
parameter modes of the loss function used for training, which cannot 
exceed M. The fact that the initial parameter guess b0 can be corrected 
only along M modes makes the error in unrecorded activity non-zero 
when the rank of A is larger than M—that is, when not enough neurons 
are sampled. Furthermore, the parameter modes and activity modes 
without a non-zero eigenvalue of the training loss need not align with 
the stiffest modes of the fully sampled loss function.

One recorded neuron. In linear networks, we can calculate the average 
error when we record only from neuron i. We use the vector ai to refer 
to the row of the subsampled matrix Ai,:. After training has converged 
for a student with initial parameters b0, which is equivalent to assum-
ing zero training error for the recorded activity of neuron i given the 
absence of measurement noise, the vector of biases after training is

bf − b∗ = (I −
aia

T
i

aTi ai
) (b0 − b∗) . (20)

The squared error in single-neuron parameters (combining both 
recorded and unrecorded neurons), ef, is calculated based on the norm 
of the vector bf − b0 given by equation (20), which reads:

e2f = e20 − (b0 − b∗)T
aia

T
i

aTi ai
(b0 − b∗)T. (21)
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Assuming that the initial guesses b0 are unbiased with respect to the 
teacher parameters b*, on average over initial conditions, the improve-
ment in the error in parameters is

⟨
e2f
e20
⟩ = 1 − 1

N . (22)

Therefore, on average, the error in parameter space is equally reduced 
for any selected neuron.

Similarly, the error in the activity of neurons reads:

xf − x∗ = A (bf − b∗) (23)

such that the squared error, using the singular value decomposition 
of A, is

E2f =
N
∑
k=1

s2k(v
T
k (b0 − b∗))

2
. (24)

The squared error E2f  can be larger or smaller than the error before 
training, unlike the error in parameter space, which can only decrease. 
Nevertheless, on average over initial conditions, the expected error 
always decreases and is given by

1 − ⟨
E2f
E20

⟩ = 1
∑ks

2
k
(

N
∑
k=1

s2kcos
2θk) , (25)

where cosθk  is the angle between ai and vk. Equation (25) is used to 
calculate the theoretical predictions in Fig. 8e.

Error in unrecorded neural activity versus single-neuron param-
eters. From the perspective of a single neuron i, we can write the fol-
lowing identity using the equation for the linear network dynamics at 
the fixed point:

(1 − Jii) (x f
i − x∗i ) = ∑

j≠i
Jij (x

f
j − x∗j) +∑

j
Jij (b

f
j − b∗j) . (26)

The first term corresponds to the error due to incorrect prediction 
of the activity of other neurons in the network, whereas the second 
term corresponds to the error due to parameter mismatch between 
teacher and student.

If neuron i is a recorded neuron, then, after training has converged, 
equation (26) equals 0, imposing the constraint

∑
j≠i

Jij (x
f
j − x∗j) = −∑

j
Jij (b

f
j − b∗j) . (27)

In other words, the weighted sum of errors from incorrectly inferring 
parameters (r.h.s.) compensates for the weighted sum of errors from 
the incorrect prediction of activity (l.h.s.).

If neuron i is not a recorded neuron, then both terms in equation (26) 
in general contribute to the squared error. Which term has a stronger 
contribution depends on the strength of recurrent connectivity. For 
strong recurrence, the first term will dominate, whereas, for weakly 
connected networks, the second term will dominate. As more neurons 
are recorded, the amplitudes of both contributions decay similarly.

Optimal selection of neurons: linear RNN. To calculate the best and 
worst strategy for sampling neurons (Fig. 8), we used a greedy strategy, 
where we first selected the neuron with the highest and lowest expected 
reduction in activity error, based on equation (25). Then, we proceeded 
iteratively, projecting out the component a(l)i  from the (l)-th selected 
neuron from the matrix A(t), calculating the matrix A(l+1):

A(l+1) =
⎛
⎜
⎜
⎝

I −
a
(l)
i (a

(l)
i )

T

(a(l)i )
T
a
(l)
i

⎞
⎟
⎟
⎠

A(l). (28)

We then selected again the row-vector a(l+1)i  that maximizes (minimizes) 
the decrease error in equation (25), for the best (worst) greedy selection 
of neurons.

Optimal selection of neurons: nonlinear RNN. For any teacher RNN 
with unknown gains or nonlinear activation functions, the mapping 
between unknown single-neuron parameters and activity is not given 
by a linear transformation via a matrix A. Moreover, the linearization of 
the gradient dynamics (equation (15)) close to the teacher parameter 
depends on the specific parameters, unlike the linear case. Neverthe-
less, we can still compute the best and worst selection of neurons based 
on an initial guess of the target parameters.

We focus on networks with firing rates given by r = ĝϕ (x + b) , 
where the notation x̂ indicates a diagonal matrix whose non-zero ele-
ments are given by vector x, and we assume the function ϕ is  
invertible. We are interested in the linearization Δr/Δb and Δr/Δg. We 
are focused on fixed point activity, and, thus, using equation (6), we 
can define the function:

F (r,b,g) = −ϕ−1 (ĝ−1r) + b + Jr = 0. (29)

By applying the implicit function theorem to F, we can calculate the 
linearized mapping from parameters to activity:

Δr = −(dFdr )
−1
( dFdb

Δb + dF
dg

Δg) (30)

Δr = ((ϕ̂−1)
′
ĝ−1 − J)

−1
((ϕ̂−1)

′ ̂r0
ĝ2 Δg + Δb) . (31)

This linear relationship is analogous to the parameter-to-activity 
mapping A defined previously for linear RNNs, allowing us to 
use the same procedure iteratively. This amounts to assuming 
that the curvature of the loss function close to the current param-
eter estimate is similar to the curvature close to the teacher  
parameters.

In Fig. 7g,h, the Jacobian of the mapping between time-varying 
activity and single-neuron parameters around the teacher’s 
parameter values was estimated numerically, using PyTorch’s 
automatic differentiation.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The connectomics data used in this study were published in Zarin 
et al.16 for Drosophila larva, in Scheffer et al.9 for the central com-
plex of adult Drosophila and in Vishwanathan et al.41 for the brain-
stem of the larval zebrafish. All generated data shown in the main 
results, together with the teacher and student recurrent networks, 
are publicly available at https://doi.org/10.5281/zenodo.16618353  
(ref. 65).

Code availability
All simulations and analyses were performed using custom 
code written in Python (https://www.python.org). The code 
used to generate all the results and can be found in ref. 65 
and https://github.com/emebeiran/connconstr.
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Extended Data Fig. 1 | Related to Fig. 2. A Teacher as in Fig. 2. The students 
are trained on a varying number of recorded neurons M. B Average error in the 
recorded and unrecorded activity between teacher and students. C Left: Error 
in the network activity for a given student network in a given trial, when M = 20 
neurons are recorded. Right: Error in the task-related readout signal. While the 
recorded neurons have low error, the unrecorded neurons in the student display 
large deviations. D Analogous to C, when more neurons are recorded, M = 60. In 
this case, the activity of unrecorded neurons and the readout are well predicted. 
E Teacher network from panel A receives a strong external two-dimensional 
time-varying input, fed to a subset of 100 excitatory neurons. Middle: The 
dimensionality of the activity, measured by the participation ratio, increases 
with the input. F Error in unrecorded neuronal activity after training student 
networks to match the input-driven teacher (color dots), compared to the 

non-driven teacher (grey dots). Fewer recorded neurons are required to predict 
activity of unrecorded neurons in this example input-driven network. G Input-
driven teacher network with different levels of connectivity sparsity and gain 
heterogeneity. Teachers have E-I random connectivity, and are initialized at the 
fixed point. A positive input of unit strength is delivered to 5 excitatory neurons. 
Recorded neurons correspond to excitatory neurons, while unrecorded neurons 
can be both excitatory or inhibitory. Teacher networks are generated with 
different fractions f of non-zero weights, and different ranges for the uniformly 
distributed gains. Both gains and biases are trained in the students. H Error in 
unrecorded activity after training vs number of recorded neurons, for different 
level of sparsity f and gain distributions. While the overall magnitude of the error 
changes for different gain strengths, the decay of the error as a function  
of M does not change.
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Extended Data Fig. 2 | Teacher networks with different dynamics, related to 
Fig. 3. A Teachers with variable network size and fixed rank-two connectivity, 
generating a limit cycle. Right: Error in the activity of recorded neurons after 
training. The students always learn the dynamics of the teacher. B Error in the 
single-neuron gains after training. C Example of error in the activity of a recorded 
neuron and an unrecorded neuron, when there is only one recorded neuron (left), 
compared to when 7 neurons are recorded (right). For one recorded neuron, the 
student learns the frequency of the limit cycle, but the temporal profile of the 
unrecorded neurons does not much the profile of the teacher network. Example 
for N = 400. D Teachers with variable network size and random connectivity, 

generating chaotic dynamics. Right: Error in the activity of recorded neurons 
after training. The students always learn the dynamics of the teacher. E Error in 
the single-neuron gains for the chaotic teachers. Note that the single-neuron 
parameters are much better inferred given enough recorded neurons when the 
teacher is chaotic than when it is low-rank, because there are many more stiff 
dimensions. F Traces of one example neuron in teacher and student networks 
with size N = 400 (left) and N = 1000 (right). For N = 400, M = 64 recorded neurons 
is sufficient to accurately match unrecorded neural activity from the teacher 
(gray line), while for N = 1000, M = 64 recorded neurons is insufficient but M = 256 
is sufficient.

http://www.nature.com/natureneuroscience
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Extended Data Fig. 3 | Training connectivity with model mismatch, related 
to Fig. 4. A Teacher with model mismatch in the activation function, from Fig. 
4a-c. B Example traces of one recorded neuron and one unrecorded neuron in 
the teacher and after training the student with mismatch in the β parameter. 
The students networks were trained with 20 recorded neurons (left) and with 
150 recorded neurons (right). C Teacher-student framework with mismatch. We 
train the connectivity of the student, given the teacher’s connectivity as initial 
condition. The single-neuron parameters are the same in teacher and student, 
while there is a mismatch in the activation function. Same network as in Fig. 4. 
D The activation function is a smooth rectification but with different degrees of 
smoothness, parameterized by a parameter β. Teacher RNN from  
Fig. 2. E Errors in the activity of recorded (left) and unrecorded (right) neurons 
for different values of model mismatch between teacher and student. We 
observe a minor decrease in the error in unrecorded neurons when recording 
from a large number of neurons, M ≈ 150. F Error in the recorded activity (loss 

function) for three different mismatch values as a function of training epochs (β 
= 1. means no mismatch). G Error in the unrecorded activity (loss function) for 
three different mismatch values as a function of training epochs. H Removing the 
mismatch in activation by training an additional parameter. We train a student 
network with the same connectivity as the teacher and different single-neuron 
parameters. However, the student also does not know the smoothness parameter 
β. The trained parameters are therefore the gains and biases of each neuron 
and the smoothness β. I Error in unrecorded activity after training on a subset 
of M recorded units, similar to C. Training the smoothness parameter of the 
nonlinearity provides the student with the same prediction power as students 
without mismatch (see Fig. 2). J Estimated parameter β during training (average 
and SEM over 10 different initializations). Networks do not retrieve the exact 
teacher value (β* = 1) although converge to values not far from it on average. 
Students have a bias towards estimating sharper activation functions (β > 1). Both 
bias and variance are reduced as the number of recorded neurons is increased.

http://www.nature.com/natureneuroscience
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Extended Data Fig. 4 | Dimensionality of the activity and rank of connectivity 
in the data-constrained RNNs, related to Fig. 5. A Neural activity traces 
(centered) used for training the student networks for the three different data 
constrained RNNs: the premotor network in the Drosophila larva, the central 
complex in the adult Drosophila, and the oculomotor integrator in larval 
zebrafish. Different trials/conditions have been concatenated. B Left: First 
eigenvalues of the covariance spectrum of the datasets. Right: Participation 

ratio of the activity covariance. The dimensionality of neural activity is higher 
in the premotor system, then the CX and then the premotor network, indicated 
by how fast the eigenvalues decay. C Left: Singular values of the connectivity 
matrix. Right: Estimated rank of the connectivity matrix J, calculated using the 
participation ratio of the distribution of singular values of J. Given the sparsity 
and heterogeneity in connectomes, the rank of the connectivity is high.

http://www.nature.com/natureneuroscience
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Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 

in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 

Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 

AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 

Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection No commercial software was used. We used Python3 and PyTorch 1.13 for the numerical experiments. Code is shared in a community 

repository: https://doi.org/10.5281/zenodo.16618353

Data analysis No commercial software was used. We used Python3 and PyTorch 1.13 for the numerical experiments. Code is shared in a community 

repository: https://doi.org/10.5281/zenodo.16618353

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 

reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 

- A description of any restrictions on data availability 

- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

Connectomics data was used from larval Drosophila (Zarin et al. 2019), from adult Drosophila -the hemibrain dataset (Scheffer et al. 2020), and from the hindbrain 
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of larval zebrafish (Vishwanathan et al. 2024). The preprocessed datasets and the simulated data shown in the results are available in a public repository: https://

doi.org/10.5281/zenodo.16618353

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 

and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender Not applicable

Reporting on race, ethnicity, or 

other socially relevant 

groupings

Not applicable

Population characteristics Not applicable

Recruitment Not applicable

Ethics oversight Not applicable

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size We systematically studied multiple student networks (at least 10) linked to the same teacher network to ensure that all results are consistent 

across random initializations. 

Data exclusions No data were excluded from the analysis, except for the few student networks whose activity became unstable over training.

Replication Code and data are available to replicate the findings of the study

Randomization No random allocation of samples was relevant to this study on recurrent neural networks. We performed statistical controls involving random 

shuffling neuronal identities to estimate how much better than chance are neural predictions.

Blinding Blinding group allocation is not relevant for this study on recurrent neural networks.

Behavioural & social sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description Briefly describe the study type including whether data are quantitative, qualitative, or mixed-methods (e.g. qualitative cross-sectional, 

quantitative experimental, mixed-methods case study). 

Research sample State the research sample (e.g. Harvard university undergraduates, villagers in rural India) and provide relevant demographic 

information (e.g. age, sex) and indicate whether the sample is representative. Provide a rationale for the study sample chosen. For 

studies involving existing datasets, please describe the dataset and source.

Sampling strategy Describe the sampling procedure (e.g. random, snowball, stratified, convenience). Describe the statistical methods that were used to 

predetermine sample size OR if no sample-size calculation was performed, describe how sample sizes were chosen and provide a 

rationale for why these sample sizes are sufficient. For qualitative data, please indicate whether data saturation was considered, and 

what criteria were used to decide that no further sampling was needed.

Data collection Provide details about the data collection procedure, including the instruments or devices used to record the data (e.g. pen and paper, 

computer, eye tracker, video or audio equipment) whether anyone was present besides the participant(s) and the researcher, and 

whether the researcher was blind to experimental condition and/or the study hypothesis during data collection.

Timing Indicate the start and stop dates of data collection. If there is a gap between collection periods, state the dates for each sample 

cohort.
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Data exclusions If no data were excluded from the analyses, state so OR if data were excluded, provide the exact number of exclusions and the 

rationale behind them, indicating whether exclusion criteria were pre-established.

Non-participation State how many participants dropped out/declined participation and the reason(s) given OR provide response rate OR state that no 

participants dropped out/declined participation.

Randomization If participants were not allocated into experimental groups, state so OR describe how participants were allocated to groups, and if 

allocation was not random, describe how covariates were controlled.

Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description Briefly describe the study. For quantitative data include treatment factors and interactions, design structure (e.g. factorial, nested, 

hierarchical), nature and number of experimental units and replicates.

Research sample Describe the research sample (e.g. a group of tagged Passer domesticus, all Stenocereus thurberi within Organ Pipe Cactus National 

Monument), and provide a rationale for the sample choice. When relevant, describe the organism taxa, source, sex, age range and 

any manipulations. State what population the sample is meant to represent when applicable. For studies involving existing datasets, 

describe the data and its source.

Sampling strategy Note the sampling procedure. Describe the statistical methods that were used to predetermine sample size OR if no sample-size 

calculation was performed, describe how sample sizes were chosen and provide a rationale for why these sample sizes are sufficient.

Data collection Describe the data collection procedure, including who recorded the data and how.

Timing and spatial scale Indicate the start and stop dates of data collection, noting the frequency and periodicity of sampling and providing a rationale for 

these choices. If there is a gap between collection periods, state the dates for each sample cohort. Specify the spatial scale from which 

the data are taken

Data exclusions If no data were excluded from the analyses, state so OR if data were excluded, describe the exclusions and the rationale behind them, 

indicating whether exclusion criteria were pre-established.

Reproducibility Describe the measures taken to verify the reproducibility of experimental findings. For each experiment, note whether any attempts to 

repeat the experiment failed OR state that all attempts to repeat the experiment were successful.

Randomization Describe how samples/organisms/participants were allocated into groups. If allocation was not random, describe how covariates were 

controlled. If this is not relevant to your study, explain why.

Blinding Describe the extent of blinding used during data acquisition and analysis. If blinding was not possible, describe why OR explain why 

blinding was not relevant to your study.

Did the study involve field work? Yes No

Field work, collection and transport

Field conditions Describe the study conditions for field work, providing relevant parameters (e.g. temperature, rainfall).

Location State the location of the sampling or experiment, providing relevant parameters (e.g. latitude and longitude, elevation, water depth).

Access & import/export Describe the efforts you have made to access habitats and to collect and import/export your samples in a responsible manner and in 

compliance with local, national and international laws, noting any permits that were obtained (give the name of the issuing authority, 

the date of issue, and any identifying information).

Disturbance Describe any disturbance caused by the study and how it was minimized.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies

Antibodies used Describe all antibodies used in the study; as applicable, provide supplier name, catalog number, clone name, and lot number.

Validation Describe the validation of each primary antibody for the species and application, noting any validation statements on the 

manufacturer’s website, relevant citations, antibody profiles in online databases, or data provided in the manuscript.

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) State the source of each cell line used and the sex of all primary cell lines and cells derived from human participants or 

vertebrate models.

Authentication Describe the authentication procedures for each cell line used OR declare that none of the cell lines used were authenticated.

Mycoplasma contamination Confirm that all cell lines tested negative for mycoplasma contamination OR describe the results of the testing for 

mycoplasma contamination OR declare that the cell lines were not tested for mycoplasma contamination.

Commonly misidentified lines
(See ICLAC register)

Name any commonly misidentified cell lines used in the study and provide a rationale for their use.

Palaeontology and Archaeology

Specimen provenance Provide provenance information for specimens and describe permits that were obtained for the work (including the name of the 

issuing authority, the date of issue, and any identifying information). Permits should encompass collection and, where applicable, 

export.

Specimen deposition Indicate where the specimens have been deposited to permit free access by other researchers.

Dating methods If new dates are provided, describe how they were obtained (e.g. collection, storage, sample pretreatment and measurement), where 

they were obtained (i.e. lab name), the calibration program and the protocol for quality assurance OR state that no new dates are 

provided.

Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance 

was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in 

Research

Laboratory animals For laboratory animals, report species, strain and age OR state that the study did not involve laboratory animals.

Wild animals Provide details on animals observed in or captured in the field; report species and age where possible. Describe how animals were 

caught and transported and what happened to captive animals after the study (if killed, explain why and describe method; if released, 

say where and when) OR state that the study did not involve wild animals.

Reporting on sex Indicate if findings apply to only one sex; describe whether sex was considered in study design, methods used for assigning sex. 

Provide data disaggregated for sex where this information has been collected in the source data as appropriate; provide overall 
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numbers in this Reporting Summary. Please state if this information has not been collected.  Report sex-based analyses where 

performed, justify reasons for lack of sex-based analysis.

Field-collected samples For laboratory work with field-collected samples, describe all relevant parameters such as housing, maintenance, temperature, 

photoperiod and end-of-experiment protocol OR state that the study did not involve samples collected from the field.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance 

was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data

Policy information about clinical studies

All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration Provide the trial registration number from ClinicalTrials.gov or an equivalent agency.

Study protocol Note where the full trial protocol can be accessed OR if not available, explain why.

Data collection Describe the settings and locales of data collection, noting the time periods of recruitment and data collection.

Outcomes Describe how you pre-defined primary and secondary outcome measures and how you assessed these measures.

Dual use research of concern

Policy information about dual use research of concern

Hazards

Could the accidental, deliberate or reckless misuse of agents or technologies generated in the work, or the application of information presented 

in the manuscript, pose a threat to:

No Yes

Public health

National security

Crops and/or livestock

Ecosystems

Any other significant area

Experiments of concern

Does the work involve any of these experiments of concern:

No Yes

Demonstrate how to render a vaccine ineffective

Confer resistance to therapeutically useful antibiotics or antiviral agents

Enhance the virulence of a pathogen or render a nonpathogen virulent

Increase transmissibility of a pathogen

Alter the host range of a pathogen

Enable evasion of diagnostic/detection modalities

Enable the weaponization of a biological agent or toxin

Any other potentially harmful combination of experiments and agents
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Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches, 

gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the 

number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe 

the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor 

was applied.

Seed stocks Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If 

plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Authentication Describe any authentication procedures for each seed stock used or novel genotype generated. Describe any experiments used to 

assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism, 

off-target gene editing) were examined.

Plants

ChIP-seq

Data deposition

Confirm that both raw and final processed data have been deposited in a public database such as GEO.

Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links 
May remain private before publication.

For "Initial submission" or "Revised version" documents, provide reviewer access links.  For your "Final submission" document, 

provide a link to the deposited data.

Files in database submission Provide a list of all files available in the database submission.

Genome browser session 
(e.g. UCSC)

Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to 

enable peer review.  Write "no longer applicable" for "Final submission" documents.

Methodology

Replicates Describe the experimental replicates, specifying number, type and replicate agreement.

Sequencing depth Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of reads and 

whether they were paired- or single-end.

Antibodies Describe the antibodies used for the ChIP-seq experiments; as applicable, provide supplier name, catalog number, clone name, and 

lot number.

Peak calling parameters Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and index files 

used.

Data quality Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold enrichment.

Software Describe the software used to collect and analyze the ChIP-seq data. For custom code that has been deposited into a community 

repository, provide accession details.

Flow Cytometry

Plots

Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Describe the sample preparation, detailing the biological source of the cells and any tissue processing steps used.

Instrument Identify the instrument used for data collection, specifying make and model number.

Software Describe the software used to collect and analyze the flow cytometry data. For custom code that has been deposited into a 

community repository, provide accession details.
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Cell population abundance Describe the abundance of the relevant cell populations within post-sort fractions, providing details on the purity of the 

samples and how it was determined.

Gating strategy Describe the gating strategy used for all relevant experiments, specifying the preliminary FSC/SSC gates of the starting cell 

population, indicating where boundaries between "positive" and "negative" staining cell populations are defined.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging

Experimental design

Design type Indicate task or resting state; event-related or block design.

Design specifications Specify the number of blocks, trials or experimental units per session and/or subject, and specify the length of each trial 

or block (if trials are blocked) and interval between trials.

Behavioral performance measures State number and/or type of variables recorded (e.g. correct button press, response time) and what statistics were used 

to establish that the subjects were performing the task as expected (e.g. mean, range, and/or standard deviation across 

subjects).

Acquisition

Imaging type(s) Specify: functional, structural, diffusion, perfusion.

Field strength Specify in Tesla

Sequence & imaging parameters Specify the pulse sequence type (gradient echo, spin echo, etc.), imaging type (EPI, spiral, etc.), field of view, matrix size, 

slice thickness, orientation and TE/TR/flip angle.

Area of acquisition State whether a whole brain scan was used OR define the area of acquisition, describing how the region was determined.

Diffusion MRI Used Not used

Preprocessing

Preprocessing software Provide detail on software version and revision number and on specific parameters (model/functions, brain extraction, 

segmentation, smoothing kernel size, etc.).

Normalization If data were normalized/standardized, describe the approach(es): specify linear or non-linear and define image types used for 

transformation OR indicate that data were not normalized and explain rationale for lack of normalization.

Normalization template Describe the template used for normalization/transformation, specifying subject space or group standardized space (e.g. 

original Talairach, MNI305, ICBM152) OR indicate that the data were not normalized.

Noise and artifact removal Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and 

physiological signals (heart rate, respiration).

Volume censoring Define your software and/or method and criteria for volume censoring, and state the extent of such censoring.

Statistical modeling & inference

Model type and settings Specify type (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first and 

second levels (e.g. fixed, random or mixed effects; drift or auto-correlation).

Effect(s) tested Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether 

ANOVA or factorial designs were used.

Specify type of analysis: Whole brain ROI-based Both

Statistic type for inference

(See Eklund et al. 2016)

Specify voxel-wise or cluster-wise and report all relevant parameters for cluster-wise methods.

Correction Describe the type of correction and how it is obtained for multiple comparisons (e.g. FWE, FDR, permutation or Monte Carlo).
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Models & analysis

n/a Involved in the study

Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis

Functional and/or effective connectivity Report the measures of dependence used and the model details (e.g. Pearson correlation, partial correlation, 

mutual information).

Graph analysis Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph, 

subject- or group-level, and the global and/or node summaries used (e.g. clustering coefficient, efficiency, 

etc.).

Multivariate modeling and predictive analysis Specify independent variables, features extraction and dimension reduction, model, training and evaluation 

metrics.
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